GOVERNMENT GAZETHE

OF THE

REPUBLIC OF NAMIBIA

R6,40
WINDHOEK - 1 September 1990
No. 68

CONTENTS
Page

GOVERNMENT NOTICE
No. 47 Amendment of Road Traffic Regulations
1

Government Notice

DEPARTMENT OF WORKS, TRANSPORT AND COMMUNICATION

No. 47

AMENDMENT OF ROAD TRAFFIC REGULATIONS

The President has under section 165 of the Road Traffic Ordinance, 1967 (Ordinance 30 of 1967), further amended the regulations promulgated under Government Notice 95 of 1967, as set out in the Schedule.

SCHEDULE

1. The following regulation is hereby substituted for regulation 2 :
"2. Subject to the provisions of regulations 3 and 5 , the registration mark of a motor vehicle shall be displayed on a plate which complies with the Standard Specification for Retro-Reflective Registration Plates for Motor Vehicles as set out in Schedule 4 to these Regulations, and which is hereinafter referred to as a registration plate.".
2. Regulation 3 is hereby amended -
(a) by the substitution for subregulation (1) of the following subregulation:
"(1) The colour of a registration plate shall be as follows, namely -
(a) for a motor vehicle owned by a member, agent or officer of or a delegate to any public international organization or institution and registered as being entitled to diplomatic immunity as contemplated in section 33 of the Ordinance, all letters and figures shall be black and the remainder of the registration plate shall be in a reflective white colour;
(b) for a motor vehicle owned by a person (other than a person referred to in paragraph (a)) registered as being entitled to diplomatic immunity as contemplated in section 33 of the Ordinance, all letters and figures shall be white and the remainder of the registration plate shall be in a reflective red colour;
(c) for a motor vehicle of which any department of state of the Republic of Namibia is the owner, all letters and figures shall be white and the remainder of the registration plate shall be in a reflective green colour; and
(d) for a motor vehicle not included under paragraphs (a), (b) or (c), all letters and figures shall be black and the remainder of the registration plate shall be in a reflective yellow colour"; and
(b) by the deletion of subregulation (4).
3. Regulation 4 is hereby amended by the deletion of subregulation (1).
4. The following regulation is hereby substituted for regulation 4 A :
"4A. Notwithstanding anything to the contrary contained in these regulations -
(a) the registration mark of a motor vehicle may -
(i) with effect from 1 January 1991; and
(ii) in the case of a motor vehicle which is registered on or after 1 September 1990, with effect from that date; and
(b) such registration mark shall with effect from 7 March 1992,
be displayed on a registration plate in a manner which complies with the said Standard Specification for Retro-Reflective Registration Plates for Motor Vehicles as set out in Schedule 4 to these Regulations.".
5. Regulation 5 is hereby amended by the substitution for subregulation (1) of the following subregulation:
"(1) In the case of a registration plate not used under the authority of a motor vehicle dealer's licence, the letters and figures shall be arranged either -
(a) in the case of a motor vehicle referred to in paragraph (a) of regulation 3(1), with all letters and figures in one line in which event such letters shall precede such figures;
(b) in the case of a motor vehicle referred to in paragraph (b) of the said regulation 3(1), with figures preceding letters in one line and figures preceding a letter in one line immediately below;
(c) in the case of a motor vehicle referred to in paragraph (c) of the said regulation 3(1) -
(i) with all letters and figures in one line in which event such letters shall precede and follow such figures; or
(ii) with letters in one line, figures in one line immediately below and letters in one line immediately below such figures; or
(d) in the case of a motor vehicle referred to in paragraph (d) of the said regulation 3(1)-
(i) with all letters and figures in one line in which event such letters shall precede and follow such figures; or
(ii) with a letter in one line, the figures in one line immediately below and the letters in one line immediately below such figures.".
6. The following Schedule is hereby added to the Regulations:
"SCHEDULE 4"

SCHEDULE 4

STANDARD SPECIFICATION
FOR
RETRO-REFLECTIVE REGISTRATION PLATES

PART I

Page
SECTION 1 SCOPE 3
SECTION 2 DEFINITIONS 3
SECTION 3 REQUIREMENTS 4
SECTION 4 PACKING AND MARKING 24
SECTION 5 SAMPLING AND COMPLIANCE WITH PART I OF THE SPECIFICATION 24
SECTION 6 INSPECTION AND METHODS OF TEST 26

STANDARD SPECIFICATION

for

RETRO-REFLECTIVE REGISTRATION PLATES

FOR MOTOR VEHICLES

PART I : BLANKS

1. SCOPE
1.l This part of the specification covers requirements for two types of blanks intended for use in the production of embossed registration plates covered by Part II of the specification.

Note: (a) The standard referred to in this part of the specification is noted in Part V and VI.
(b) Except under the standardization mark scheme, special agreement between the manufacturer and the purchaser is required for assessment of compliance with the requirements of the specification of those blanks on which the retro-reflective material is applied during the process of embossing the registration number.
2. DEFINITIONS
2.1 For the purposes of this part of the specification the following definitions shall apply:

Blank

A flat metal plate having on one side an embossed border and at least the area within this border covered with retro-reflective material, the material being supplied as a loose sheet if it is
intended to be subsequently applied as part of the embossing process of the registration number.

Chromaticity

Chromaticity as defined by the International Commission on Illumination (CIE) in Part V.

Defective

A blank that fails in one or more respects to comply with the appropriate requirements of this part of the specification.

Embossing

A process by which a raised border is moulded onto a plate (to form a blank) or by which characters are so moulded onto a blank that they stand out in relief on the retro-reflective surface of a registration plate.

Illuminants A and D65

Illuminants A and D65 as defined by the International Commission on Illumination (CIE) in Part V.

Lot

Not less than 500 and not more than 10000 blanks of the same materials, made by one manufacturer, and submitted at any one time for inspection and testing.

Luminance factor
(at a point on the surface of a non-selfradiating body, in a given direction, and under specific conditions of illumination). The ratio of the luminance of the material to that of a perfect
reflecting diffuser identically illuminated.

Registration mark or registration number

A combination of letters and numerals as prescribed by the relevant Road Traffic Ordinance.

Registration plate (Plate)

A plate displaying the registration mark of a motor vehicle or trailer (see Fig. 1 and 4 in Part II of the specification).

Retro-reflection

Reflection in which light is reflected in directions close to the direction of incidence irrespective of the angle of incidence at the reflecting surface.
3. REQUIREMENTS
3.1 TYPE.

A blank shall be of one of the following types:
(a) Type A.

A blank

1) the front face of which, other than the embossed border, is covered with retro-reflective material (This material may be supplied as a loose sheet if it is intended to be subsequently applied as part of the embossing process of the registration number.);
2) having a substrate of a black polymer film below the retro-reflective material; and

6
3) intended for use in an embossing process that obviates the need for painting the raised surfaces of the characters.
(b) Type B

A blank the front face of which is completely covered with retro-reflective material, and intended for use in an embossing process in which the raised surfaces of the characters and the border are painted black.

3.2 MATERIALS

3.2.1 Metal.

The metal base of a blank shall be one of the following materials and shall be suitable for the embossing process:
a) Aluminium sheet of thickness at least $0,9 \mathrm{~mm}$ and complying with the appropriate of the following minimum tensile strength requirements:

Blank size, mm Tensile strenght, min., MPa
$440 \times 120 \quad 95$
$250 \times 205 \quad 80$
b) Mild steel of thickness at least 0.5 mm .

3.2.2 Retro-reflective Material for colours Yellow and White

3.2.2.1 Colour and luminance factor
a) Colour.

The colour of the retro-reflective material shall be yellow or white and when the colour is tested in accordance with 6.8 (with Illuminant D65), the chromaticity co-ordinates shall be
within the area on a chromaticity diagram defined by the points having the appropriate values given in Table 1.
b) Luminance factor

When the luminance factor of the material is determined in accordance with 6.8 , it shall be not less than the appropriate value given in Table 1.

TABLE 1 - CHROMATICITY CO-ORDINATES AND LUMINANCE FACTORS

3.2.2.2 Coefficients of retro-reflection

When the coefficients of retro-reflection of the material are determined in accordance with 6.9 , they shall be not less than the relevant given values in Table 2.

TABLE 2 - COEFFICIENTS OF RETRO-REFLECTION

*The coefficient of retro-reflection at angles of observation and entrance of $0,33^{\circ}$ and 5° respectively, shall not exceed $100 \mathrm{~cd} /\left(1 \mathrm{x} \cdot \mathrm{m}^{2}\right)$ for yellow material and $160 \mathrm{~cd} /\left(1 \mathrm{x} . \mathrm{m}^{2}\right)$ for white material.

3.2.2.3 Flexibility

After a piece of retro-reflective material, complete with protective lining for the adhesive backing, of size $200 \mathrm{~mm} x$ 100 mm has been conditioned for 4 h at $25 \pm 2^{\circ} \mathrm{C}$ and then wrapped, reflecting surface outwards, lengthwise around a mandrel of diameter 20 mm and length at least 250 mm (i.e. the retro-reflective material has been wrapped with its longer axis parallel to that of the mandrel), there shall be no evidence of cracking of the retro-reflective material.
3.2.3. Colour and Luminance Factor for colours Red, Green and Blue

NOTE: For the purposes of this specification, one type of daylight surface colours are specified, i.e. retro-reflective colours.
a) When the chromaticity co-ordinates of a new specimen are measured in accordance with 3.2.3.2 , they shall be within the relevant region on the chromaticity diagram (see Fig. 1), appropriate to the type of colour.

NOTE

1) The chromaticity co-ordinates of the corners (points of intersection) of the regions on the diagram (see Fig. 1) for new specimens are given in Table 4.

Red - Signal red All
Green - Flag green E08
Blue - National Flag blue F04
b) After the specimen has been weathered in accordance with 3.2.3.4 and 3.2.3.5, the chromaticity co-ordinates shall be within the relevant region on the chromaticity diagram (see Fig. 1).

TABLE 3 COEFFICIENTS OF RETRO-REFLECTION

- 3.2.3.1 TEST FOR COEFFICIENT OF RETRO-REFLECTION TABLE 3.

Determine the coefficients of retro-reflection of a specimen in accordance with Part VI. On each specimen, take the average of two readings at rotation angles (about the reference axis) that are 90° apart, and check for compliance.
3.2.3.2 COLOUR AND LUMINANCE FACTOR TEST.

Use a spectrophotometer or other equally suitable colour measuring device to determine the chromaticity co-ordinates and luminance factor of the specimen in accordance with Part V and VI, using Standard Illuminant D65 and 45/0 geometry.

3.2.3.3 SPECULAR GLOSS TEST.

Measure the gloss of a specimen in accordance with an acceptable international method.
3.2.3.4 ACCELERATED NATURAL WEATHERING TEST

NOTE: Signs intended for use in coastal areas shall be tested in Swakopmund and signs intended for use inland shall be tested in Windhoek.

So mount the specimen that it faces northwards with the inclination to the horizontal as given below:

> Windhoek Swakopmund

Protect the edges and corners of the test specimen with a coat of spar varnish (or other suitable material) and subject the test specimen to unprotected outdoor exposure for the appropriate period of 1800 h .

After every 6 months, rinse the specimen with water, wash it with a neutral detergent solution, using a soft bristle brush or a sponge to avoid scratching and give it a final rinse with de-ionized water. Examine the specimen and then repeat the tests given in 3.2.3.1, 3.2.3.2 and 3.2.3.3 and check for defects.
3.2.3.5 ARTIFICIAL WEATHERING TEST.

Protect the edges and corners of the test specimen with a coat of spar varnish (or other suitable material) and subject the test specimen to artificial weathering for the appropriate period of 1800 h . Examine the specimen and then repeat the tests given in 3.2.3.1, 3.2.3.2 and 3.2.3.3 and
check for compliance with relevant requirements.
3.2.3.6 SALT FOG TEST.

On a coated specimen enscribe a mark of length about 70 mm through the coating to the substrate. Using international acceptable apparatus, salt solution, test conditions and procedures, subject the specimens (including steel fasteners) to the test for a period of 240 h .

TABLE 4 - CHROMATICITY CO-ORDINATES FOR DAYLIGHT COLOURS OF NEW SPECIMENS

NOTE: The chromaticity co-ordinates of the corners (points of intersection) of the regions on the diagram for weathered specimens are given in Table 5.
c) When the luminance factor of a new and a weathered specimen is measured in accordance with 3.2.3.2, it shall be at least the relevant value given in Table 6, appropriate to the type of colour and class of the retro-reflective material.

TABLE 5 - CHROMATICITY CO-ORDINATES FOR DAYLIGHT COLOURS OF WEATHERED SPECIMENS

TABLE 6 - LUMINANCE FACTOR

Fig. 1 - Boundaries for daylight surface colours

3.3 SHAPE AND DIMENSIONS

Blanks shall be rectangular in shape and, subject to a tolerance of $\pm 1 \mathrm{~mm}$ on each dimension, shall be of one of the following sizes:
a) 440 mm x 120 mm
b) $\quad 250 \mathrm{~mm} \times 205 \mathrm{~mm}$

The corners of each blank shall be rounded to a radius of $15 \pm 2 \mathrm{~mm}$.

3.4 PREPARATION

3.4.1 Cleanness

The surface of the metal base to which the retro-reflective material is applied shall be dry and free from grease, oil, corrosion, and any form of contamination before the retro-reflective material is applied (see 3.5) and, when relevant, before it is coated (see 3.4.2 and 3.4.3).

3.4.2 Coating of Aluminium

3.4.2.1 Type A blanks

The front surface of each Type A blank having an aluminium base shall (before the application of the retro-reflective material (see 3.5)) be coated with
a) an epoxy resin primer (having a dry film thickness of at least $5 \mu \mathrm{~m}$) followed by a coat (having a dry film thickness of at least $20 \mu \mathrm{~m}$) of a black polyester resin; or
b) An epoxy resin primer (having a dry film thickness of at least $3 \mu \mathrm{~m}$) followed by a coat (having a dry film
thickness of at least $100 \mu \mathrm{~m}$) of a black polyvinyl chloride plastisol.

3.4.2.2 Type B blanks

The surfaces of each Type B blank having an aluminium base that are coated (before the application of the retro-reflective material (see 3.5)) shall have a coat consisting of
a) a black powder coating that has a dry film thickness of at least $35 \mu \mathrm{~m}$, or
b) a suitable surface-conversion coating followed by a coat (that has a dry film thickness of at least $20 \mu \mathrm{~m}$) of a black baking enamel.

3.4.3 Coating of Steel

3.4.3.1 Type A Blanks

The surfaces of each Type A blank having a steel base shall (before the application of the retro-reflective material (see $3.5)$) be coated with zinc applied by a continuous process (the coating having an average mass of at least $185 \mathrm{~g} / \mathrm{m}^{2}$ for both sides, a single spot measurement of at least $152 \mathrm{~g} / \mathrm{m}^{2}$, and a percentage of zinc, on any one side of the blank, of at least 40% of the total) followed by a suitable chemical preparation of the zinc surface on the front face.

The front face of each Type A steel blank shall, after the application of the zinc coat, be coated with the coating given in 3.4.2.1(a) or (b).

3.4.3.2
 Type B blanks

The surfaces of each Type B blank having a steel base shall (before the application of the retro-reflective material (see 3.5)) be
a) coated by the application of

1) a coat (having a dry film thickness of at least 25μ $\mathrm{m})$ of a medium oil-based or semi-drying oil-based zinc chromate primer (having a pigment volume concentration of $35-40 \%$ and containing at least 300 g / kg of zinc chromate in the pigment), followed by a coat (having a dry film thickness of at least $25 \mu \mathrm{~m}$) of a black baking enamel; or
2) a black powder coating that has a dry film thickness of at least $35 \mu \mathrm{~m}$; or
3) a coat (having a dry film thickness of $2-3 \mu \mathrm{~m}$) of a water-based composition of chromium compounds in solution, the composition containing sufficient metallic zinc in suspension to give a surface density in the dry coating of at least $3,5 \mathrm{~g} / \mathrm{m}^{2}$, followed by a coat (having a dry film thickness of at least 13μ $m)$ of a solvent-based coating, containing sufficient metallic zinc dispersed in an epoxy resin to give a surface density of zinc in the dry coating of at least $55 \mathrm{~g} / \mathrm{m}^{2}$; or
b) subjected to an iron phosphate surface conversion process that produces a coating mass of at least $430 \mathrm{mg} / \mathrm{m}^{2}$, and then be so coated with an anti-corrision epoxy resin baking primer followed by a black baking enamel as to produce a paint coating that has a total dry film thickness of at least $24 \mu \mathrm{~m}$; or
c) coated with zinc applied by a continuous process (the coating having an average mass of at least $185 \mathrm{gm} / \mathrm{m}^{2}$ for both sides, a single spot measurement of at least 152 $\mathrm{g} / \mathrm{m}^{2}$, and a percentage of zinc, on any one side of the blank, of at least 40% of the total) followed by a suitable chemical preparation of the zinc surface.

3.5 APPLICATION OF RETRO-REFLECTIVE MATERIAL

Blanks other than those on which the retro-reflective material is intended to be applied during the process of embossing the registration number shall have the material applied to the front surface. In all cases the retro-reflective material shall be of such a size that
a) in the case of a Type A blank, the area inside the embossed border (see 3.6) is covered with retro-reflective material; or
b) in the case of a Type B blank, the retro-reflective material so covers the whole of the surface of the blank that at no part is the width of the retro-reflective material less than the width of the blank by more than 2 mm , and at no part is the distance between the edges of the retro-reflective material and the adjacent edges of the blank more than 1.3 mm .

3.6 EMBOSSED BORDER

The embossed border of a blank shall be of curved or flat cross-section, generally as given in Fig 2. The embossing shall extend around the periphery of the blank and shall have an overall width of $8 \pm 1 \mathrm{~mm}$ and a height above the surface of the blank of,
a) in the case of a Type A blank, not less than $0,4 \mathrm{~mm}$ and not more than 1 mm provided that in the case of a Type A blank where the application of the retro-reflective material is part of the embossing process of the registration number, the embossing height of the border shall be not less than 1 mm and not more than 2 mm ; or
b) in the case of a Type B blank, not less than 1 mm and not more than 2 mm .

The front face of the embossed border of a Type A blank shall be matt black and the edges of the black area shall be straight and sharply defined. Subject to a tolerance of $\pm 1,3 \mathrm{~mm}$ over the length of a blank, the border shall be parallel to the edges of the plate.

Dimensions in millimetres
Fig. 2 - Typical Embossed Borders

3.7 WORKMANSHIP

Blanks shall be free from creases, crevices, and sharp or jagged edges, and retro-reflective and coated surfaces shall be free from creases, cracks, chips, blisters, discoloration, and spots.

3.8 PERFORMANCE

3.8.1 Resistance to Weathering

When blanks are tested in accordance with 6.3 ,
a) the chromaticity co-ordinates shall still be within the area of the appropriate chromaticity diagram as defined in 3.2.2.1 and 3.2.3;
b) The coefficient of retro-reflection at angles of observation and entrance of $0,33^{\circ}$ and 5° respectively, shall be at least 80% of the minimum values given in Table 2 and 3 ;
c) the retro-reflective material shall show no sign of cracking, blistering, or loss of adhesion; and
d) when relevant, the painted or powder-coated surface shall show no sign of chalking or checking.

3.8.2 Resistance to Impact

When blanks are tested in accordance with 6.4 , the retro-reflective material and (when relevant) the painted or powder-coated surface shall show no loss of adhesion and no evidence of cracking.

3.8.3 Resistance to Scratching

When blanks are tested in accordance with 6.5 , the scratch produced
a) on the retro-reflective material shall not have penetrated through the retro-reflective material; and
b) (when relevant) on the painted or powder-coated surface shall be free from jagged edges and shall not have penetrated through to the substrate.

3.8.4 Resistance to Salt Fog

When blanks are tested in accordance with 6.6 , no surface shall show any sign of corrosion and the retro-reflective material and any painted or powder-coated surface shall show no sign of blistering, delamination, edge lifting, or loss of adhesion except that, in the case of a painted or powder-coated surface, any blister or creep (or both) or corrosion shall not extend further than 2 mm on each side of the scribe mark.

3.8.5 Resistance to Bending

When blanks are tested in accordance with 6.7, there shall, after each bending operation, be no sign of cracking of the metal, or of cracking or loss of adhesion of the retro-reflective material or (when relevant) the paint or powder coating.
4. PACKING AND MARKING

4.1 PACKING

The blanks and, when relevant, the retro-reflective material shall be so packed as to ensure that they are not damaged during transportation and storage.
4.2 MARKING

Each blank shall bear the manufacturer's trade name or trade mark, given in legible and indelible marking on the surface not covered by the retro-reflective material.
5. SAMPLING AND COMPLIANCE WITH PART I OF THE SPECIFICATION

NOTE : This section applies to the sampling for inspection and
testing before acceptance or rejection of single lots (consignments) in cases where no information about the implementation of quality control or testing during manufacture is available to help in assessing the quality of the lot.
5.1 SAMPLING

The following sampling procedure shall be applied in determining whether a lot complies with the appropriate requirements of this part of the specification. The samples so taken shall be deemed to represent the lot.

5.1.1 Sample for Inspection

After checking the lot for compliance with the requirements of 4.1, draw at random from the lot the number of blanks given in Column 2 of Table 7 relative to the appropriate lot size shown in Column 1 , ensuring that the sample includes blanks of the different sizes in, as near as practicable, the same proportions as they occur in the lot.

5.1.2 Sample for Testing

After inspection (see 6.1) of the sample taken in accordance with 5.1.1, draw from it at random the appropriate number of test sets given in Column 4 of Table 7.

TABLE 7 - SAMPLE SIZES

5.2 COMPLIANCE WITH PART I OF THE SPECIFICATION

The lot shall be deemed to comply with the requirements of this part of the specification if
a) on inspection of the sample taken in accordance with 5.1.1, the number of defectives found does not exceed the appropriate acceptance number given in Column 3 of Table 7; and
b) on testing of the sample taken in accordance with 5.1.2, no defective is found.
6. INSPECTION AND METHODS OF TEST

Note : In the case of blanks where the retro-reflective material is intended to be applied as part of the embossing process of the registration number, inspections and tests shall be carried out on
test specimens on which the retro-reflective material has been permanently applied using the registration number embossing process but no number having been embossed.
6.1 INSPECTION

Visually examine and measure each blank in the sample taken in accordance with 5.1.1, for compliance with all the appropriate requirements of the specification compliance with which is not assessed by the tests given in 6.3-6.9 (inclusive).

6.2 TEST SPECIMENS

From each test set taken in accordance with 5.1.2, cut the following test specimens:
a) Resistance to weathering

One test specimen of width at least 70 mm and of length at least 150 mm , having not more than one cut edge.
b) Resistance to impact

A test specimen of any convenient size. The test may be carried out on an end of the specimen cut in terms of (e) below before it is subjected to bending.
c) Resistance to scratching

A test specimen of width at least 55 mm and of length at least 100 mm .
d) Resistance to salt fog

One test specimen in the case of a blank without any paint or powder coating on the rear surface and two specimens in other

27
cases, of width at least 100 mm and of length at least 150 mm and having not more than two cut edges.
e) Bending test

One test specimen of width between 100 mm and 120 mm and of length at least 250 mm , and having embossed on it one character of a registration mark complying with the appropriate tequirements of Part II of the specification, except that the character, in the case of a Type B blank, shall be unpainted.

6.3 RESISTANCE TO WEATHERING

6.3.1 Apparatus

A weathering unit the essential details of which are as follows:
a) Test chamber

A test chamber constructed of corrosion-resistant materials enclosing eight fluorescent UV lamps, a heated water pan, test specimen racks, and provisions for controlling and recording operating times and temperatures.
b) Lamps

Lamps of Type FS 40 fluorescent UV lamps or equivalent, the spectral energy distribution curve having a maximum at a wavelength of 313 nm with less than 1 of the peak intensity at 280 nm . The lamps have a length of 1220 mm and a nominal rating of 40 W when operated from a ballast providing a controlled current of 430 mA at 102 V .
c) Lamp and test specimen arrangement

The lamps are mounted in two banks of four lamps each to

28
provide a uniform distribution of irradiance. The lamps in each bank are mounted parallel on 70 mm centres. The test specimens are mounted in two stationary racks each of height 300 mm and width 1154 mm , the test surface being in each case parallel to the plane of one bank of lamps and at a distance of 50 mm from the nearest surface of the lamps.
d) Condensation mechanism

Water vapour is generated by the heating of a water pan extending under the entire specimen area and containing a minimum water depth of 25 mm . Specimen racks and the test specimens themselves constitute the side walls of the chamber. The back surface of each specimen is exposed to the cooling effect of the ambient room air. The resulting heat transfer causes water vapour, saturated with air, to condense on the test surface.

The specimens are so arranged that condensate runs of the test surface by gravity and is replaced by fresh condensate in a continuous process. Vents along the bottom of the test chamber are provided to admit ambient air and so prevent oxygen depletion of the condensate.
e) Water supply

The water supply has an automatic control to regulate the level in the water pan. Distilled, de-ionized, or potable tap water may be used.
f) Cycle timer

A continuously operating cycle timer is provided to program the selected cycle of $U V$ radiation periods and condensation periods. An hour meter is provided to record total time of operation and total time of UV exposure.

6.3.2 Temperature Measurement

a) The temperature is measured by means of a dial-type thermometer the bulb of which is inserted in a black aluminium panel of size $75 \mathrm{~mm} \times 100 \mathrm{~mm} \times 2,5 \mathrm{~mm}$. The thermometer is accurate to $1^{\circ} \mathrm{C}$ through a range of $30-80{ }^{\circ} \mathrm{C}$. The indicator dial is located outside the test chamber.
b) The aluminium panel and thermometer bulb are so positioned in the centre of the exposure rack that they are subjected to the same conditions as the specimens.

6.3.3 Temperature Control

a) During $U V$ exposure, the selected equilibruim temperature is maintained within $\pm 3{ }^{\circ} \mathrm{C}$ by the supply of heated air to the test chamber.
b) During condensation exposure, the selected equilibruim temperature is maintained within $\pm 3^{\circ} \mathrm{C}$ by the heating of the water in the pan.
c) The UV and condensation temperature controls are independent of each other.
d) Doors are located on the room air side of the specimen rack to act as insulation during the $U V$ exposure and to minimize draughts. The doors do not interfere with the room air cooling of the specimen during the condensation exposure.

6.3.4 Procedure

a) Seal the cut edge of each specimen (see 6.2(a)).
b) Mount the test specimens in the specimen racks with the test surfaces facing the lamps.
c) Select the following cycle conditions:

1) 4 h UV exposure at $60^{\circ} \mathrm{C}$.
2) 4 h condensation exposure at $50^{\circ} \mathrm{C}$.
d) Except for servicing the apparatus and inspecting the specimens, repeat the cycle continuously for 240 h .
e) At regular intervals during the specified exposure period, examine the specimens under 10% magnification.
f) Check for compliance with 3.8.1.
6.4 RESISTANCE TO IMPACT

6.4.1 Apparatus

a) Striker

A cylindrical piece of steel of length and diameter approximately 230 mm and 25 mm respectively, having a hardened steel ball of diameter $12,7 \pm 0,1 \mathrm{~mm}$ mounted at its bottom end and having a mass of $900 \pm 10 \mathrm{~g}$.
b) Tube

A slotted or split vertical tube graduated in millimetres, of
approximately length 500 mm and of diameter large enough to enable the striker to drop freely through it.
c) Base plate

A horizontal steel plate with a hole of diameter 16 mm , the plate being so placed that the hole is concentric with and directly below the opening of the tube.

6.4.2 Procedure

a) So place the specimen (see $6.2(b)$) on the base plate that an impact will be made at any point on the retro-reflective surface.
b) Raise the striker to the appropriate height and allow it to fall with an energy of 2.25 J in the case of steel blanks, and $1,15 \mathrm{~J}$ in the case of aluminium blanks.
c) When relevant, repeat (a) and (b) but with the point of impact at any point on a painted or powder-coated surface.
d) Using a 10 -power lens, examine the dented part(s) of the specimen for compliance with 3.8.2.

6.5 RESISTANCE TO SCRATCHING

6.5.1 Apparatus

a) Needle and arm

A needle with a hardened steel hemispherical point of diameter 1 mm , fixed vertically, point downwards, to the end of a counterpoised horizontal arm. The horizontal arm provides for the loading of masspieces directly above the needle and it may be set in equilibrium on its fulcrum by adjustment of the

```
                counter-mass before masspieces are loaded above the needle.
```

b) Masspieces

A set of forty 50 g masspieces.
c) Base with sliding specimen holder

A sliding specimen holder that moves freely and automatically on its base under the loaded needle (which is perpendicular to the specimen holder).
d) Electric current supply and ammeter

The needle and specimen holder are so connected in series with an ammeter and an electric current supply that, when the coated surface of a specimen is penetrated, the needle makes electrical contact with the underlying metal, and this penetration is indicated by a flow of current through the ammeter.

6.5.2 Procedure

a) Set the horizontal arm in equilibrium. Clamp the specimen (see $6.2(c)$) to the specimen holder with the retro-reflective material upwards. Load the needle with masspieces of total mass 2000 g and lower the needle carefully onto the retro-reflective surface while starting to slide the holder. Alternatively, put the end of the needle on a razor blade on the retro-reflective surface so that the needle can slide off the sharp edge of the blade onto the surface. Slide the holder at a uniform speed of approximately $30 \mathrm{~mm} / \mathrm{s}$ for a distance of about 90 mm .
b) Use a 10 -power lens to examine the edges of the groove.
c) Check for compliance with the relevant requirements of 3.8.3.
d) Repeat (a) to (c) above on two other parts of the retro-reflective surface.
e) When relevant, repeat (a) to (d) above on the painted or powder-coated surface of the specimen.

6.6 RESISTANCE TO SALT FOG

6.6.1 Apparatus

A fog cabinet having the following features:
a) Exposure chamber

A chamber made from, or coated with, a suitable corrosion-resistant material, so constructed that the spray circulates freely and equally about all specimens, and having baffles to prevent the salt fog from striking the specimens directly.
b) Racks for supporting the specimens

Removable racks made from, or coated with, a suitable corrosion-resistant material and so constructed that the specimens are held without touching each other or any other metal and that salt solution will not drip from one specimen onto another.
c) Salt solution reservoir

A reservoir of adequate size and made from, or coated with, a suitable corrosion-resistant material. It is so constructed that there is no recirculation of the salt solution.
d) Atomizing nozzles

Nozzles made from a suitable plastics material and so designed
that they will produce a finely divided salt solution fog.
e) Air supply

A compressed air supply for the atomizing nozzles, filtered to remove all impurities. Means are provided to humidify and heat the compressed air as required. The air pressure is constant to within $\pm 700 \mathrm{~Pa}$ and sufficient to produce a finely divided salt solution fog.
f) Heating of chamber and temperature control

The exposure chamber is suitably heated and its temperature is controlled by means of a thermostat.

NOTE : The use of an immersion heater is not permitted.

6.6.2 Salt Solution

The salt solution is made up as follows:
a) Salt

Sodium chloride containing sodium iodide not exceeding $1 \mathrm{~g} / \mathrm{kg}$ of salt, and total impurities not exceeding $3 \mathrm{~g} / \mathrm{kg}$ of salt, calculated on the dry basis.
b) Water

Water containing total solids not exceeding $200 \mathrm{mg} / \mathrm{kg}$ of water.
c) Preparation

The salt solution is prepared by dissolving $5 \pm 0,5$ parts by mass of salt in 95 parts by mass of water and filtering the
solution.

6.6.3 Conditions of Test

a) Temperature

Maintain the temperature in the exposure zone at $33-36^{\circ} \mathrm{C}$.
b) Salt fog

Ensure that the degree of atomization of the salt solution is such that suitable fog collectors placed at any point in the exposure zone will collect, over an average running period of at least $16 \mathrm{~h}, 65-375 \mathrm{ml}$ of solution per hour per square metre of horizontal collecting area. Ensure that the solution so collected has a pH value of $6,5-7,2$ when measured electrometrically.

6.6.4 Procedure

a) In the case of specimens (see 6.2(d)) that have a paint or powder coating, use a suitable cutting tool and carefully make (with the cutting edge of the cutting tool held at an angle of about 30° to the surface and the plane of the blade perpendicular to that surface) a scribe mark of length about 75 mm , by cutting through the coating to the base.
b) Establish the test conditions in the exposure chamber. Mount the specimens on the supporting racks and insert the racks in the exposure chamber.
c) Close the exposure chamber and operate the cabinet continuously for 240 h .
d) After the test period, remove the specimens and rinse them thoroughly with distilled water. Examine the following for compliance with the applicable requirements of 3.8.4.:

1) When relevant, the paint or powder coating immediately after removal of the specimens from the exposure chamber;
2) the retro-reflective material, after a 24 h recovery period has elapsed.

6.7 BENDING TEST

So place the unlaminated surface of the test specimen (see 6.2(e)) against a mandrel of diameter $50 \pm 1 \mathrm{~mm}$ that the line of maximum bending coincides with the vertical middle line of the letter or numeral. Taking about 3 s , bend the specimen through an angle of 90 ± 2 over the mandrel, and then examine it for compliance with 3.8.5. Immediately following this procedure and taking about 3 s , so bend the specimen back through the same angle that it is approximately in its original alignment and again examine it for compliance with 3.8.5.

6.8 COLOUR AND LUMINANCE FACTOR TEST

Determine the chromaticity co-ordinates and luminance factor of the specimen by means of a spectrophotometer or other equally suitable colour measuring device in accordance with Part V and VI, using Standard Illuminant D65 and 45/0 geometry.

Check for compliance with 3.2.2.1 and 3.2.3.2.

6.9 PHOTOMETRIC TEST

Determine the coefficients of retro-reflection in accordance with Part VI, using the values of both observation angle and entrance angle given in Columns 1 and 2 of Table 2 and 3 . On each specimen, take the average of two readings at rotation angles (about the reference axis) that are 90° apart.

STANDARD SPECIFICATION

FOR

RETRO-REFLECTIVE REGISTRATION PLATES

FOR MOTOR VEHICLES

PART II PLATES

PART II

Page
SECTION 1 SCOPE 39
SECTION 2 DEFINITIONS 39
SECTION 3 REQUIREMENTS 40
SECTION 4 PACKING, MARKING AND LABELLING. 46
SECTION 5 SAMPLING AND COMPLIANCE WITH PART II OF THE SPECIFICATION 47
SECTION 6 INSPECTION AND METHODS OF TEST 49
6.1 Inspection 49
6.2 Test Specimens 49
6.3 Resistance to Impact 50
6.4 Resistance to Fuel Mixture 50
6.5 Resistance to Scratching 51
6.6 Resistance to Abrasion 51
6.7 Resistance to Weathering 53
6.8 Resistance to Salt Fog 53
FIGURES 1-6. 54-68

STANDARD SPECIFICATION
 for
 RETRO-REFLECTIVE REGISTRATION PLATES

FOR MOTOR VEHICLES

PART II : REGISTRATION PLATES

1. SCOPE
1.1 This part of the specification covers registration plates produced by the embossing of blanks (see Part I of the specification) with a registration mark and intended for use on motor vehicles (including motor cycles and motor tricycles) and trailers.

NOTE : The standard referred to in this part of the specification is noted in Part I.
2. DEFINITIONS
2.1 For the purposes of this part of the specification the definitions, other than the definitions of "Defective" and "Lot", given in Part I of the specification and the following definitions shall apply:

Defective

A registration plate that fails in one or more respects to comply with the appropriate requirements of this part of the specification.

Lot

Not less than 10 and not more than 1200 registration plates of the same materials, made by one manufacturer, and submitted any one time for inspection and testing.
3. REQUIREMENTS

3.1 REGISTRATION MARK

3.1.1 General

The registration mark on a registration plate shall have been embossed on a blank that complies with the relevant requirements of Part I of the specification, and the registration mark and, when relevant, the border on each plate shall be painted black in accordance with the requirements of 3.1.5. No marking other than the registration mark, the marking required in terms of 4.2 , and the border, shall appear on the front surface of a registration plate.

3.1.2 Embossing

The height above the surface of the retro-reflective background of the embossed characters of a registration mark on a plate shall be not less than $0,4 \mathrm{~mm}$ and not more than 2 mm .

3.1.3 Form and Dimensions of Characters of Reqistration Marks

a) The surfaces of the characters (letters and numerals) of a registration mark with

1) not more than seven characters appearing in one line on a plate of size $440 \mathrm{~mm} \times 120 \mathrm{~mm}$ (see Fig. $1(\mathrm{a})-(\mathrm{c})$), or
2) not more than four characters on the lower line on a plate of size $250 \mathrm{~mm} \times 205 \mathrm{~mm}$ (see Fig. 1(d)-(f)), shall, subject to a tolerance of $\pm 0,5 \mathrm{~mm}$, have shapes and dimensions conforming to those of the appropriate characters given in Fig. 3. (An example of a device used for checking the shapes and dimensions of characters is given in Fig. 2.)

41
b) The surfaces of the characters of a registration mark with

1) more than seven characters appearing in one line on a plate of size $440 \mathrm{~mm} \times 120 \mathrm{~mm}$ (see Fig. 4(a)), and
2) more than four characters on the lower line on a plate of size $250 \mathrm{~mm} \times 205 \mathrm{~mm}$ (see Fig. 4(b)), shall have shapes similar to those of the appropriate characters given in Fig. 3 and dimensions and tolerances as follows:

Height of characters................................ $75 \pm 1 \mathrm{~mm}$
Width of characters, other than the letters "I", "M", and "W", and the numeral "l"...... $35 \pm 1 \mathrm{~mm}$ Width of letters "M" and "W"................. $40 \pm 1 \mathrm{~mm}$ Width of the letter "I" and stroke in characters... $10 \pm 0,5 \mathrm{~mm}$ Width of numeral " 1 "............................. $15 \pm 1 \mathrm{~mm}$

3.1.4 Setting out of Characters of Registration Marks

3.1.4.1 All reqistration marks

The layout of the characters on a registration plate shall be such that the registration mark is symmetrically placed on the plate.

3.1.4.2 Registration marks with not more than seven characters (see Fig. 11

a) In the case of a plate bearing not more than seven characters, for the purpose of setting out the characters at their correct spacing, each character shall (except where otherwise shown in Fig. 3) be regarded as lying within a frame of height 75 mm (see frame lines "c" and
" d ") and of width equal to the distance between the frame lines "a" and "b" shall be as shown in Fig. 3. The characters shall be so set out that the frame lines of adjacent characters are coincident (see Fig. 5) except that

1) in the case of a plate having seven characters in one line (see Fig. $1(a)$ and Fig. 5(a)), the width of each space that separates the frame lines of adjacent letters and numerals shall be at least 5 mm and subject to a tolerance of $\pm 1 \mathrm{~mm}$, two such spaces shall be of the same width;
2) in the case of a plate having seven characters in two lines (see Fig. 5(c)), the width of the space that separates the frame lines of adjacent numerals and letters in the lower line shall be at least 5 mm ;
3) in the case of a plate having less than seven characters in one line (see Fig. $5(b)$), the width of the space that separates the frame lines of adjacent letters and numerals shall be not less than 20 mm and not more than 50 mm ; and
4) in the case of a plate in which the characters are in two lines (see Fig. 5(c) and 5(d)), the top line shall be separated from the bottom line by a space, between frame lines, of height $10 \pm 1 \mathrm{~mm}$.
b) In the case of a plate bearing seven characters, the width of the spaces between the outside edges of the plate and the frame lines of the first and last characters
5) of a plate in which all seven characters are in one line (see Fig. 5(a)), and
6) in the lower line of a plate in which the seven characters are in two lines (see Fig. 5(c)), shall conform to the appropriate value given below, and, subject to a tolerance of $\pm 1 \mathrm{~mm}$, the two outside spaces shall be of the same width.

Width of space between frame lines of letter (s) and numerals, mm	Width of space at outside edge, mm
5 to less than 15 10 ± 1 15 or more 15 ± 1	

3.1.4.3 Registration marks with more than seven characters (see Fig. 4)

In the case of a plate bearing more than seven characters, the characters shall be arranged
a) in one line on a plate of size $440 \mathrm{~mm} \times 120 \mathrm{~mm}$ with the letters preceding the numerals (see Fig. 4(a)); and
b) in two lines on a plate of size $250 \mathrm{~mm} \times 205 \mathrm{~mm}$ with the letters on the upper line and the numerals on the lower line (see Fig. 4(b)), except in the case of a registration mark having six numerals, when the first two numerals shall be placed on the same line as and to the right of the letters (see Fig. 4(c)).

The characters shall be placed as follows:

Width of space between adjacent letters...... 10 mm , min.
Width of space between adjacent numerals..... 10 mm , min. Width of space separating adjacent groups of letters and numerals on a plate bearing a single row of characters and on a plate

```
bearing a double row of characters including six numerals (see Fig. \(4(a)\) and \(4(c)) . . . . . .25 \mathrm{~mm}\), min. Width of spaces between outside edges of plate and the first and last characters on a plate bearing a single row of characters (see Fig. 4(a))......................................... 20 mm, min.
Width of spaces between outside edges of plate and the first and last numerals on a plate bearing a double row of characters including five numerals (see Fig. \(4(\mathrm{~b})) . . . . .15 \mathrm{~mm}\), min. Width of space between top line and bottom line on a plate bearing a double row of characters............................................ \(10 \pm 1 \mathrm{~mm}\)
```

In the case of a plate bearing a single row of characters including six numerals there shall be a dash of length at lest 15 mm between the third and fourth numerals (see Fig. $4(a))$.

3.1.5 Painted Surfaces of Characters and Borders on Registration Plates

The raised surfaces of the characters and the border of a registration plate manufactured from Type B blanks (see Part I of the specification) shall have been coated by the application of at least one coat of matt black paint that is compatible with the retro-reflective material except that, in the case of a border with curved embossing (see Fig. $1(a)$ of Part I of the specification), the painted surface shall consist of a black stripe centrally positioned along the border and of width $5 \pm 1 \mathrm{~mm}$. The total dry film thickness of the black paint, determined by means of a dry film thickness gauge, which in the case of steel plates is of the magnetic flux type, and in the case of aluminium plates is of the eddy current type, shall be at least $25 \mu \mathrm{~m}$.

3.1.6 Workmanship

The registration mark shall be clearly defined. An embossed plate shall be of such flatness that when it is laid with the registration mark upwards on a truly flat surface, no part of the unembossed portion of the plate shall be more than 3 mm from the surface. The coating on the raised surface of the characters and border shall be free from creases cracks, chips, blisters, discoloration, and spots.

3.2 PERFORMANCE

3.2.1 Resistance to Impact

When a plate is tested in accordance with 6.3, the coating on the raised surface of the character shall show no sign of loss of adhesion to the substrate and no evidence of cracking.

3.2.2 Resistance to Fuel Mixture

When the marking (see 4.2) and the coating on the raised surfaces of the characters and on the border are tested in accordance with 6.4, there shall be no sign of solution or softening of the marking or of the coating.

3.2.3 Resistance to Scratching

When the marking (see 4.2) and the coating on the raised surfaces of the characters and on the border are tested in accordance with 6.5 (after completion of the test given in 6.4), the scratch produced on the coating and on the marking shall not have penetrated through to the substrate.

3.2.4 Resistance to Abrasion

When the coating on the raised surfaces of the characters and on the
border is tested in accordance with 6.6, there shall be no sign of penetration through the coating to the substrate.

3.2.5 Resistance to Weathering

When a plate is tested in accordance with 6.7, the coating on the raised surface of the characters and on border shall show no sign of cracking, blistering, or loss of adhesion.

3.2.6 Resistance to Salt Fog

When a plate is tested in accordance with 6.8 , the coatings on the raised surface of the characters and on the border shall show no sign of blistering, delamination, or loss of adhesion.
4. PACKING, MARKING, AND LABELLING
4.1 PACKING

The plates shall be so packed as to ensure that they are not damaged during transportation and storage.
4.2 MARKING

The front surface of each plate shall bear, in legible and indelible marking, the embosser's trade name or trade mark in a space of size approximately 5 mm in height and 25 mm in length.

4.3 LABELLING

On the rear surface of at least one plate in each set of plates that bear the same registration mark there shall be a securely attached label that provides at least the following information:
a) A warning that plates should not be fastened by any means that may obscure them or affect their legibility;
b) a warning that fasteners used for attaching the plates to a vehicle should on no account be made of copper, brass, or bronze, or of unprotected mild steel;
c) a warning that a plate should be fitted to the vehicle only where it is fully supported by the bodywork of the vehicle or, by a backing plate of tensile strength at least equal to that of the plate.
5. SAMPLING AND COMPLIANCE WITH PART II OF THE SPECIFICATION

NOTE : This section applies to the sampling for inspection and testing before acceptance or rejection of single lots (consignments) in cases where no information about the implementation of quality control or testing during manufacture is available to help in assessing the quality of the lot.

5.1 SAMPLING

The following sampling procedure shall be applied in determining whether a lot complies with the appropriate requirements of this part of the specification. The samples so taken shall be deemed to represent the lot.

5.1.1 Sample for Inspection

After checking the lot for compliance with the requirements of 4.1, draw at random from the lot the number of registration plates given in Column 2 of Table 1 relative to the appropriate lot size shown in Column 1, ensuring that the sample includes registration plates of the different sizes in, as near as practicable, the same proportions as they occur in the lot.

5.1.2 Samples for Testing

a) After inspection (see 6.1) of the sample taken in accordance with 5.1.1, draw from it, when relevant, at random, the appropriate number of registration plates given in Column 4 of Table 1.
b) From the blanks used in the manufacture of the lot take at random two blanks, including at least one of nominal dimensions 440 mm x 120 mm . In the case of Type A, the two blanks shall have no retro-reflective material applied and, in the case of Type B, the two blanks shall be supplied with enough paint and other material necessary for the preparation of the test specimens given in 6.2.2.

TABLE 1 - SAMPLE SIZES

	1	,
1	$2 \mid 3$	4
	Sample for inspection	
Lot size, registration plates	Sample size, Acceptance registration\|number plates	Sample for testing,
		registration plates
	1	
10-15	$3 \quad 0$	2
16-25	50	2
$26-50$	$8 \quad 1$	3
51 - 90	13 \| 2	3
91 - 150	$20 \mid 3$	3
151-280	32 洔	5
281-500	50 7	5
501-1200	80 10	5
-	1	

49

5.2 COMPLIANCE WITH PART II OF THE SPECIFICATION

The lot shall be deemed to comply with the requirements of this part of the specification if
a) on inspection of the sample taken in accordance with 5.1.1, the number of defectives found does not exceed the appropriate acceptance number given in Column 3 of Table 1; and
b) on testing of the sample taken in accordance with 5.1.2, no defective is found.
6. INSPECTION AND METHODS OF TEST
6.1 INSPECTION

Visually examine and measure each plate in the sample taken in accordance with 5.1 .1 for compliance with all the appropriate requirements of this part of the specification compliance with which is not assessed by the tests given in 6.3-6.8 (inclusive).

6.2 TEST SPECIMENS

6.2.1 Resistance to Impact, Weathering, and Salt Fog

From each registration plate in the sample taken in accordance with 5.1.2(a), cut the following test specimens:
a) Resistance to impact

A test specimen of any convenient size.
b) Resistance to weathering

One test specimen, of width at least 70 mm and of length at least 150 mm , and containing at least two characters.

c) Resistance to salt fog

One test specimen, of width at least 100 mm and of length at least 150 mm , and containing at least two characters.

6.2.2 Resistance to Fuel Mixture, Scratching, and Abrasion

From the blanks taken in accordance with $5.1 .2(b)$, cut test specimens of the following approximate sizes:

Length Width

a) Resistance to fuel mixture and scratching $100 \mathrm{~mm} \quad 55 \mathrm{~mm}$
b) Resistance to abrasion $\quad 400 \mathrm{~mm} \quad 100 \mathrm{~mm}$

On the retro-reflective surface of each specimen from Type B blanks so coat an area of suitable size with the black paint used for coating the raised surfaces of the plates in the lot, that the dry thickness of the coat is at least $25 \mu \mathrm{~m}$.

Using the method and material used by the embosser of the registration mark, apply to an uncoated part of the retro-reflective surface of specimen (a) above the marking as given on the plates in the lot (see 4.2).
6.3 RESISTANCE TO IMPACT

Use the method given in Subsection 6.4 of Part I of the specification to test each specimen (see 6.2.1), but set up the apparatus so that an impact will be made at any point on a character. Check for compliance with 3.2.1.
6.4 RESISTANCE TO FUEL MIXTURE

Apply to approximately $25 \mathrm{~cm}^{2}$ of the painted area on the
retro-reflective surface or the exposed polymer film (as relevant) of the specimen (see 6.2.2) about 5 ml of a fuel mixture consisting of denatured ethanol (two parts by volume) and benzine (one part by volume), and apply also enough of this mixture to cover the marking on the specimen. In a draught-free area, allow the mixture to evaporate completely and then immediately inspect the treated surface and the marking for compliance with 3.2.2.

6.5 RESISTANCE TO SCRATCHING

Use the method given in Subsection 6.5 of Part I of the specification to test the marking and the surface of the specimen that was used for the test given in 6.4 , but use visual means to check for compliance with 3.2.3.
6.6 RESISTANCE TO ABRASION

6.6.1 Apparatus

a) Washability testing apparatus (see Fig. 6) consisting of a brush with stiff black butt-cut Chinese hog bristles securely wired into an aluminium brush block of size approximately 90 $\mathrm{mm} x 40 \mathrm{~mm} \times 13 \mathrm{~mm}$. There are 60 holes in the block, each about 4 mm in diameter, solidly filled with bristle. The abrading surface of the bristles (which extend 20 mm below the block) is dressed down with sandpaper or, if necessary, levelled on a hotplate so that it is as nearly plane as possible. The brush is held in a metal frame on which masspieces are symmetrically loaded to bring the total mass of the brush assembly to $450 \pm 5 \mathrm{~g}$. A suitable driving mechanism is connected to wires fastened to a vertical peg at each end of the frame to enable the brush to be moved back and forth
over the specimen under test at a constant speed of 35 - 40 oscillations (70-80 strokes) per minute. The length of each stroke is adjusted to approximately 330 mm , and the wires do not exert any vertical force component. The apparatus is mounted on a horizontal table that is provided with means for securing the specimen under test. A supply of cleaning solution is so arranged that it can be allowed to drip onto the specimen and there is suitable means for collecting excess solution and for ensuring that the specimen is at no time completely immersed in the cleaning solution. Replace the brush when the bristles have become so worn that they extend less than 16 mm from the block.
b) Detergent solution

A $0,5 \%$ solution in distilled water of a detergent having the following composition:

是 $(\mathrm{m} / \mathrm{m})$

Sodium pyrophospate.................... 51
Sodium sulphate, anhydrous........... 16
Sodium alkyl aryl sulphonate.......... 23
Sodium metasilicate, soluble.......... 8.5
Sodium carbonate.......................... 1,5

6.6.2 Procedure

a) Immerse the brush bristles to a depth of about 13 mm in water at $25-30^{\circ} \mathrm{C}$ for 30 min. Shake the brush vigorously to

53
remove excess water and then soak it for 5 min in the specified cleaning solution.
b) Mount the specimen (see 6.2.2) firmly on the washing apparatus, place the wet brush on the test surface so that the 90 mm dimension is in the direction of motion, wet the surface, and start oscillating the brush immediately. During the test, allow additional cleaning solution to drop in the path of the brush in sufficient quantities to keep the test surface wet. Run the apparatus for 10000 oscillations.
c) Remove the specimen, wash it immediately with water at a moderate temperature, and examine the test surface within the middle 100 mm of the brush path for compliance with 3.2.4.

6.7 RESISTANCE TO WEATHERING

Use the method given in Subsection 6.3 of Part I of the specification to test each specimen (see 6.2.1) and check for compliance with 3.2.5.
6.8 RESISTANCE TO SALT FOG

Use the method given in Subsection 6.6 of Part I of the specification to test each specimen (see 6.2.1) and check for compliance with 3.2 .6 .

54

Dimensions in millimetres

7167

FIG. 1 - Examples of: Layout of Registration Marks with not more than Seven Characters

NOTE
a) Dimensions in millimetres.
b) The dimensions of the template are such that the outline of the appropriate character should folm the median of the double lines
of the template.

Fig. 2 - Typical Transparent Template for Checking Characters

NOTE
a) Dimensions in millimetres.
b) Dimensions between frame lines for
letters and numbers, except where
shown, are as follows:
Width (between frame lines "a" and "b"):
Letters: 60 mm
Numbers: 54 mm
Height (between frome lines "c" and "d"): 75 mm
c) All radii, except where shown: 1 mm .

Fig. 3-Shapes and Sizes of Letters and Numerals

Fig. 3 (continued)

Fig. 3 (continued)

Fig. 3 (continued)

60

1

Fig. 3 (continued)

Fig. 4 - Examples of Layout of Registration Marks with more than Seven Characters

Various combinatiors of letters and numerals NOTE : Spacing according to character arrangements 5 (a)Seven Charxters in One Line (see also Fig. $1(a)$ and (c))

Dimensions in millimetres
5(b) Five Characters ir One Line (see also Fig. 1(b)
FIG 5. - Sizes of Registration Plates and Examples of Spacing of Letters and Numerals

Dimenslons in millimetres
7166

5 (d) Five Characters in Two Lines (see also Fig:-1(e))

Fig. 5 (continued)

Fig. 6 - Washability Testing Apparatus

PLASTIC BLANKS

PART III

CONTENTS

PART III

Page

SECTION 1 SCOPE 71
SECTION 2 DEFINITIONS 71
SECTION 3 REQUIREMENTS 72
SECTION 4 PACKING AND MARKING 74
SECTION 5 INSPECTION AND METHODS OF TEST 75
5.1 Inspection 75
5.2 Test Specimens 75
5.3 Conditioning of Specimens 76
5.4 Resistance to Weathering 76
5.5 Resistance to Impact 76
5.6 Tensile Strenght at Yield. 77
5.7 Softening Point 78
5.8 Resistance to Fuel Mixture 81
5.9 Resistance to Abrasion 81
FIGURES 1-4 84-85

STANDARD SPECIFICATION

FOR

RETRO-REFLECTIVE REGISTRATION PLATES

FOR MOTOR VEHICLES

PART III : BLANKS (PLASTICS)

1. SCOPE
1.1 This part of the specification covers requirements for plastics blanks for use in the production of registration plates, covered by Part IV of the specification.

NOTE:

The standards referred to in this part of the specification are listed in Part I and IV
2. DEFINITIONS
2.1 For the purposes of this part of the specification the definitions given in Part I of the specification (other than the definition of "Blank") and the following definition shall apply:

Blank

A flat plastics plate.

3. REQUIREMENTS

3.1 FORMING

Each blank shall be formed by an injection moulding process.

3.2 MATERIAL

A blank shall be of one of the following materials:
a) Methyl methacrylate polymer;
b) impact modified methyl methacrylate polymer;
c) a co-polymer of methyl methacrylate containing at least 85% by mass of material derived from a methyl methacrylate;
d) polycarbonate

In addition, the material shall be such that the blank is UV-stable, transparent, has a surface specular gloss at 60° of at least 80 , and complies with the performance requirements of 3.5 .

3.3 SHAPE AND DIMENSIONS

The shape and overall dimensions of a blank shall comply with the requirements given in Subsection 3.3 of Part I of the specification. The thickness of the blank shall be not less than 3
mm and not more than 4 mm . The edges of one face of each blank shall be rounded or bevelled at approximately 45°, over at least half the thickness of the blank (see Fig. 1).
3.4 WORKMANSHIP

A blank shall be free from bubbles, creases, crevices and sharp or jagged edges, and shall be of such flatness that when the face of the blank is laid on a truly flat surface, no part of this face is more than 3 mm from the surface.
3.5 PERFORMANCE

3.5.1 Resistance to Weathering

When tested in accordance with 5.4, the blank shall show no signs of cracking, dulling or change of colour.

3.5.2 Resistance to Impact

When tested in accordance with 5.5 , the blank shall show no sign of cracking.

3.5.3 Tensile Strenght at Yield

When a blank is tested in accordance with 5.6, the stress corresponding to the yield point of a test specimen shall be at least 35 MPa in the case of a methacrylate material and at least 55 MPa in the case of polycarbonate.

3.5.4 Softening Point

When a blank is tested in accordance with 5.7, the softening point shall be at least $80^{\circ} \mathrm{C}$ in the case of methyl methacrylate material and at least $140^{\circ} \mathrm{C}$ in the case of polycarbonate.

3.5.5 Resistance to Fuel Mixture

When a blank is tested in accordance with 5.8 , there shall be no dulling of the material and no visible surface cracking, and any change in hardness of the treated surface shall not exceed 10%.

3.5.6 Resistance to Abrasion

When a blank is tested in accordance with 5.9, the specular gloss measured at the end of the test shall be at least 50% of the value measured at the start of the test.
4. PACKING AND MARKING
4.1 PACKING

The blanks shall be so packed as to ensure that they are not damaged during transportation and storage.

4.2 MARKING

Each blank shall bear, on the front face and forming part of the moulding, the manufacturer's name or trade name or trade mark in legible and indelible marking. The marking shall be located adjacent to the top right-hand corner of the blank and shall occupy a space of approximately 5 mm in height and 25 mm in length.
5. INSPECTION AND METHODS OF TEST
5.1 INSPECTION

Visually examine and measure each blank in the sample for compliance with all the relevant requirements of the specification for which tests to assess compliance are not given in 5.4-5.9 (inclusive).
5.2 TEST SPECIMENS

Prepare the following test specimens :

NOTE: The test specimens given in (a)-(e) below may be prepared from a single blank.
a) Resistance to weathering

A test specimen of length at least 150 mm and of width at least 70 mm and having not more than one cut edge.
b) Resistance to impact

A test specimen of any convenient size.
c) Tensile strenqth

Three test specimens of the size and shape given in Fig. 2.
d) Softening point

Three test specimens, each of size approximately 10 mm square
and of thickness not less than $2,5 \mathrm{~mm}$ and not more than 3 mm . (The specified thickness may be obtained by machining the material on one side only.)
e) Resistance to fuel mixture

A test specimen of any convenient size provided that it is big enough to include a surface area of approximately $100 \mathrm{~cm}^{2}$.

f) Resistance to abrasion

A test specimen of length approximately 440 mm and of width approximately 120 mm .

NOTE : In the case of blanks of size $250 \mathrm{~mm} \times 250 \mathrm{~mm}$, the test specimen consists of two pieces.

5.3 CONDITIONING OF SPECIMENS

Prior to testing, condition all specimens (except specimens for weathering) for a period of at least 16 h at a temperature of $23 \pm$ $2^{\circ} \mathrm{C}$ and a relative humidity of $50 \pm 5 \%$.
5.4 RESISTANCE TO WEATHERING

Use the method given in Subsection 6.3 of Part I of the specification. Check for compliance with the requirements of 3.5.1.
5.5 RESISTANCE TO IMPACT

Use the method given in Subsection 6.4 of Part I of the
specification, except that the striker is raised to a height that will allow it to fall on any point on the face of the specimen (see $5.2(\mathrm{~b}))$ and with an energy of $8 \pm 0,25 \mathrm{~J}$.

Check for compliance with the requirements of 3.5.2.

5.6 TENSILE STRENGTH AT YIELD

5.6.1 Apparatus

A tensile testing machine having a fixed jaw and a movable jaw capable of a rate of separation of $300 \pm 5 \mathrm{~mm} / \mathrm{min}$, and fitted with a load indicator capable of showing the tensile load carried by the test specimen and of indicating this load to an accuracy of 1 or better.

5.6.2 Procedure

Place the test specimen (see 5.2(c)) in the jaws of the tensile testing machine. Start the machine and continue applying stress to the test specimen at least until the yield point of the specimen is reached. Record the force at which this point is reached and stop the machine.

Repeat the above procedure with the other two test specimens. Use the following formula to calculate the tensile strength of the specimen:

Load applied at yield, MN
Tensile strength, MPa $=$ Average cross-sectional area, m^{2}

Determine the yield stress of the material for the blank by
calculating the arithmetic mean of the tensile strength of the three test specimens, and check for compliance with the requirements of 3.5.3.

5.7 SOFTENING POINT

5.7.1 Apparatus

a) Softening point apparatus

A Vicat softening point temperature apparatus having the following components (see also Fig. 3):

1) Rod

A rod made of an alloy having a low thermal conductivity (to reduce its thermal expansion over the range of temperatures used in the test) and provided with a carrying plate. The rod is so held in a rigid metal frame that it can move vertically freely.
2) Indenting tip

An indenting tip, made of hardened steel, in the form of a cylinder of length approximately 3 mm , having a cross-sectional area of $1,00 \pm 0,15 \mathrm{~m}^{2}$ and fixed to the bottom of the rod. The lower surface of the tip is plane, perpendicular to the axis of the rod and free from burrs.
3) Gauge

A micrometer dial gauge (or other equivalent measuring instrument) graduated in divisions of $0,01 \mathrm{~mm}$.
4) Masspieces

Where necessary, enough masspieces such that, when they are placed on the carrying plate, the combined mass of the rod, indenting tip, carrying plate and masspieces exerts a force of $50 \pm 0,5 \mathrm{~N}$ on the test specimen. (The combined mass will be approximately 5 kg .)
b) Bath

A bath containing a suitable heating liquid into which the apparatus (see Fig. 3) is placed, and of such size that a test specimen mounted in the apparatus is at least 35 mm below the surface of the liquid. The bath is fitted with a stirrer and a heating control of such design as to allow the temperature of the liquid to be raised uniformly at a rate of $50 \pm 5{ }^{\circ} \mathrm{C} / \mathrm{h}$.
c) Thermometer

A thermometer suitable for measuring the temperature of the liquid in the bath to within $0,5^{\circ} \mathrm{C}$.

5.7.2 Procedure

Place the specimen (see $5.2(\mathrm{~d})$) with, when relevant, the non-machined surface uppermost and horizontally under and in contact
with the indenting tip, ensuring that the distance of the indenting tip from the edges of the test specimen is at no point less than 3 mm . Ensure that the surface of the test specimen that is in contact with the base of the apparatus, is flat. Immerse the assembly (see Fig. 3) in the bath and hold the temperature of the liquid to at least 50 - C below the expected softening temperature of the test specimen. Ensure that the bulb of the thermometer is at the same level as, and as close as possible to, the test specimen.

After approximately 5 min, set the micrometer dial gauge to zero and ensure, by adding masspieces to the carrying plate if necessary, that the force applied to the test specimen is $50 \pm 0,5 \mathrm{~N}$. Increase the temperature of the bath at a uniform rate of $50 \pm 5^{\circ} \mathrm{C} / \mathrm{h}$ and ensure that the liquid is continuously stirred. When the identing tip has penetrated the surface of the test specimen to a depth of $1,0 \pm 0,1 \mathrm{~mm}$, record the temperature of the bath.

Repeat the above procedure on the other two test specimens and determine the softening point of the material by calculating the arithmetric mean of the temperatures recorded for the three test specimens. Check for compliance with the requirements of 3.5.4.

NOTE :

If the results of the individual tests differ by more than $2^{\circ} \mathrm{C}$, discard the results and repeat the test on further sets of three test specimens until the results obtained for the three test specimens do not differ from one another by more than $2^{\circ} \mathrm{C}$.

5.8 RESISTANCE TO FUEL MIXTURE

5.8.1 Procedure

a) Select an area of approximately $100 \mathrm{~cm}^{2}$ on the surface of the specimen (see 5.2(e)).
b) Measure and record, on the Rockwell "R" scale, the surface hardness of this area. (Typical hardness values as measured on the Rockwell "R" scale are 105-120 in the case of methacrylate and 115-125 in the case of polycarbonate.)
C) Apply to this area approximately 1 ml of a fuel mixture consisting of the following:

Denatured Methanol 2 parts by volume
Benzene \qquad Petroleum ether (boiling range $60-120^{\circ} \mathrm{C} 7$ parts by volume
d) Allow the mixture to evaporate completely in a draught-free area.
e) Immediately measure and record, on the Rockwell "R" scale, the surface hardness of the treated surface. Compare this reading with the reading taken in (b) above, and check for compliance with the requirements of 3.5 .5 .

5.9.1 Apparatus

a) Specular qlossmeter $\left(60^{\circ}\right)$

A 60 - glossmeter consisting of an incandescent light source furnishing an incident beam, means for locating the surface of the specimen, and a receptor located to receive the required pyramid of rays reflected by the specimen, the receptor consisting of a photosensitive device responding to visible radiation.
b) Abrader

An abrader (see Fig. 4) consisting of a boat, of approximate size $90 \mathrm{~mm} \times 55 \mathrm{~mm}$ at its base, of total mass $450 \pm 5 \mathrm{~g}$ and equipped with suitable attachments for fixing abrasive paper (see (c) below) to the bottom of the boat.

Wires fastened to a vertical peg at each end of the boat are so actuated as to move the boat back and forth over the test specimen at a constant speed of $35-40$ oscillations (70-80 strokes) per minute. The length of each stroke is approximately 330 mm and the wires moving the boat do not exert a vertical force component. The apparatus is mounted on a horizontal table to which the specimen can be firmly clamped. Provision is made for a constant supply of water to drip onto the specimen and for a suitable means of collecting excess water.
c) Abrasive paper

Pieces of No 400 waterproof abrasive paper.

5.9.2 Procedure

Measure and record the 60° specular gloss of the front surface of the specimen (see 5.2(f)). Fix the abrasive paper to the boat of the abrader. Clamp the specimen, with its front surface uppermost, in position on the table and thoroughly wet the surface of the specimen. Start the abrader and, during the abrading of the specimen, use enough water to keep the surface of the specimen wet. After the abrader has completed 15 oscillations, stop the abrader, remove the specimen and, with a clean cloth, wipe clean the abraded surface. Leave the specimen to dry for a period of at least 30 min at room temperature and then measure and record the 60° specular gloss of the front surface. Check for compliance with the requirements of 3.5.6.

1(a) Bevelled Edge

(b) Rounded Edge

Fig. 1 - Examples of Shaped Edge

Fig. 2 - Tensile Test Specimen

Fig. 3 - Schematic Arrangement of Vicat Softening Point Temperature Apparatus

Fig. 4 - Abrader

STANDARD SPECIFICATION

FOR

RETRO-REFLECTIVE REGISTRATION PLATES

FOR MOTOR VEHICLES

PART IV

PLASTIC PLATES

CONTENTS

PART IV

Page

SECTION 1 SCOPE 89
SECTION 2 DEFINITIONS 89
SECTION 3 REQUIREMENTS 90
SECTION 4 PACKING, MARKING AND LABELLING 94
SECTION 5 INSPECTION AND METHODS OF TEST 95
5.1 Inspection 95
5.2 Test Specimens 95
5.3 Conditioning of Specimens 98
5.4 Resistance to Weathering 98
5.5 Resistance to Salt Fog 98
5.6 Resistance to Scratching 98
5.7 Resistance to Impact 99
5.8 Resistance to Abrasion 99
5.9 Resistance to Bending. 100
5.10 Strength of Adhesion. 100
FIGURES 1-4 102-113

89

STANDARD SPECIFICATION

FOR

RETRO-REFLECTIVE REGISTRATION PLATES

FOR MOTOR VEHICLES

PART IV : REGISTRATION PLATES (PLASTICS)

1. SCOPE
1.1 This part of the specification covers plastics registration plates produced by applying a registration mark and border to a blank (see Part III of the specification) and intended for use on motor vehicles (including motor cycles and motor tricycles) and trailers.

NOTE

The standards referred to in this part of the specification are listed in Part I, II and III.
2. DEFINITIONS
2.1 For the purposes of this part of the specification the definitions for "Registration mark or registration number" and "Registration plate (Plate)" given in Part I of the specification, the definition
for "Blank" given in Part III of the specification and the following definition shall apply:

Retro-reflective surface

A surface from which light is reflected in directions close to the directions close to the direction of incidence within a wide range of angles of incidence at the surface.
3. REQUIREMENTS
3.1 MATERIALS

3.1.1 Blanks

The retro-reflective material, registration mark, border and protective cover material on a registration plate shall have been applied to a blank that complies with the requirements of Part III of the specification.

3.1.2 Retro-reflective Material

The colour of the retro-reflective material for plates shall be red, blue, green, yellow or white. The retro-reflective material shall be such that, when the material is applied to the surface of the plastics blank in accordance with 3.4, the colour, luminance factor and coefficients of retro-reflection of the plate comply with the relevant requirements of Subsection 3.2 .2 and 3.2 .3 of Part I of the specification.

3.1.3 Reqistration Mark and Border

The registration mark and border of a plate shall be of
a) matt black self-adhesive polyester sheeting, polymer film transfer ink, or silk screening ink, of thickness not exceeding $25 \mu \mathrm{~m}$; or
b) for the registration mark only, matt black, fully pre-shrunk polyethylene sheeting that contains an ultraviolet inhibitor and is of thickness not exceeding $80 \mu \mathrm{~m}$.

3.1.4 Protective Cover

Protective covers for plates shall be of a material that is waterproof, fully pre-shrunk, flexible and of thickness at least $20 \mu \mathrm{~m}$.

3.2 REGISTRATION MARK

The shape, dimensions and spacing of the characters (letters and numerals) of a registration mark shall comply with the appropriate requirements of Subsections 3.1 .3 and 3.1.4 of Part II of the specification except that, in the case of registration marks referred to in Subsection 3.1.3(b) of Part II of the specification, the shape and dimensions of the characters shall, subject to a tolerance of $\pm 0,5 \mathrm{~mm}$, be as shown in Fig. 1 .
3.3 BORDER

The border of a plate shall be as shown in Fig. 2(a) or 2(b) and
shall extend around the four edges of the plate.

3.4 APPLICATION (See Fig. 3)

a) The registration mark and border shall interpose the retro-reflective surface of the retro-reflective material and the rear surface of the blank.
b) The retro-reflective material shall be so applied that the retro-reflective surface is in contact with and completely covers the registration mark and border, and the remainder of the rear surface of the blank.
C) A protective cover shall be applied to the whole of the rear surface of the retro-reflective material.
d) If an adhesive is used to bond the rear surface of the blank to the front surface of the retro-reflective material, the adhesive shall be colourless.
3.5 WORKMANSHIP

The retro-reflective material, registration mark and border of a plate shall be free from creases, chips, blisters, discoloration and spots. The registration mark shall be clearly defined.

3.6 PERFORMANCE

3.6.1 Resistance to Weathering

When a plate is tested in accordance with 5.4,
a) the chromaticity co-ordinates of the retro-reflective parts of the plate shall still be within the area defined by the chromaticity co-ordinates given in Subsection 3.2.2.1 and 3.2.3 of Part I of the specification;
b) the reflected luminous intensity, at an observation angle of 0.2° and an angle of incidence of 4°, shall be at least 50% of the appropriate corresponding initial value given in Subsection 3.2.2.2 and 3.2.3.1 of Part I of the specification;
c) the retro-reflective material, registration mark, border and protective cover shall show no sign of cracking, blistering or loss of adhesion;
d) when relevant, the adhesive (see $3.4(\mathrm{~d})$) shall remain colourless; and
e) the registration mark shall show no loss of legibility.

3.6.2 Resistance to Salt Fog

When tested in accordance with 5.5 , the plate shall comply with the requirements given in $3.6 .1(c)$, (d) and (e).

3.6.3 Resistance to Scratching, Impact and Abrasion

When a plate is tested in accordance with $5.6,5.7$ and 5.8 , in each case there shall be no sign of penetration of the protective cover.

3.6.4 Resistance to Bending

When a plate is tested in accordance with 5.9, there shall, after
each bending operation, be no sign of cracking of the plastics blank or of cracking or loss of adhesion of the retro-reflective material, protective cover, registration mark or border.

3.6.5 Strength of Adhesion

When a plate is tested in accordance with 5.10, the strength of the adhesion of the retro-reflective material and the protective cover shall be at least $1 \mathrm{~N} / \mathrm{mm}$ of width.
4. PACKING, MARKING AND LABELLING
4.1 PACKING

Plates shall be so packed as to ensure that they are not damaged during transportation and storage.

4.2 MARKING

The surface of the plate containing the registration mark shall bear, in legible and indelible marking, and of the same material as that used for the registration mark, the manufacturer's name or trade name or trade mark in a space approximately 5 mm in height and 25 mm in length.

4.3 LABELLING

The labelling of plates shall comply with the requirements of Subsections $4.3(a)$ and $4.3(c)$ of Part II of the specification.
5. INSPECTION AND METHODS OF TEST

5.1 INSPECTION

Visually examine and measure each plate in the sample for compliance with all the relevant requirements of the specification, for which tests to assess compliance are not given in 5.4-5.10 (inclusive).

5.2 TEST SPECIMENS

5.2.1 Specimens for Tests other than Strength of Adhesion

NOTE:

At least two registration plates are required in order to prepare all the test specimens given in (a)-(f) below.

From single registration plates, cut the following test specimens:
a) Resistance to weathering

A test specimen of length at least 150 mm and of width at least 70 mm , and containing at least two characters.
b) Resistance to Salt Fog

A test specimen of length at least 150 mm and of width at least 100 mm , and containing at least two characters.
c) Resistance to scratching

A test specimen of length approximately 100 mm and of width
approximately 55 mm .
d) Resistance to impact

A test specimen of any convenient size.
e) Resistance to abrasion

A test specimen of length approximately 150 mm and of width approximately 120 mm .
f) Resistance to bending

A test specimen of length at least 250 mm and of width between 100 mm and 120 mm and having on it at least one character of a registration mark and a section of a border.

5.2.2 Specimens for Strength of Adhesion Test

NOTE

Sufficient blanks, retro-reflective material and protective cover material of the type used (in each case) in the manufacture of the registration plates under test, are required to prepare the test specimens given below.

Prepare the test specimens as follows:
a) Laminated retro-reflective and protective cover material

1) From the blanks cut four test panels, each of size approximately $120 \mathrm{~mm} \times 70 \mathrm{~mm}$.
2) From the laminated retro-reflective and protective cover material cut 12 test strips each of size approximately $300 \mathrm{~mm} \times 15 \mathrm{~mm}$.
3) To the surface of each of the four test panels (see (1) above), starting approximately 20 mm from the one end of the panel, and in the direction of the length of the test panel, apply, in the manner used by the manufacturer, three test strips (see (2) above) adjacent to one another.
b) Unlaminated retro-reflective and protective cover material
4) From the blanks cut eight test panels, each of size approximately $120 \mathrm{~mm} \times 70 \mathrm{~mm}$.
5) From both the retro-reflective material and the protective cover material cut 12 test strips, each of size approximately $300 \mathrm{~mm} \times 15 \mathrm{~mm}$.
6) To the surface of each of four of the test panels (see (1) above) apply three test strips (see (2) above) of the retro-reflective material as in (a)(3) above.
7) Cover one surface of each of the four remaining test panels with retro-reflective material, then apply three test strips of protective cover material (see (2) above) to the retro-reflective material on each of the panels, as in (a)(3) above.

5.3 CONDITIONING OF SPECIMENS

5.3.1 In the case of all specimens for the test given in 5.9, and specimens for the tests given in 5.6, 5.7 and 5.8 that have been prepared from plates having protective covers made from materials other than plastics, condition the specimens prior ro testing for a period of at least 16 h at a temperature of $23 \pm 2^{\circ} \mathrm{C}$ and a relative humidity of $50 \pm 5 \%$.
5.3.2 In the case of specimens for the test given in 5.10, condition half of the specimens as in 5.3 .1 above, and subject the remaining half to the test for resistance to weathering given in 5.4. In addition, ensure that a period of at least 72 h has elapsed between the time that the retro-reflective material or the protective cover material or both (as appropriate) was applied to the blank, and the commencement of the test.
5.4 RESISTANCE TO WEATHERING

Use the method given in Subsection 6.3 of Part I of the specification. Check for compliance with the requirements of 3.6.1.
5.5 RESISTANCE TO SALT FOG

Use the method given in Subsection 6.6 of Part I of the specification. Check for compliance with the requirements of 3.6.2.
5.6 RESISTANCE TO SCRATCHING

Use the method given in Subsection 6.5 of Part I of the
specification to test the protective cover of the specimen (see 5.2.1(c)), except that the electric current supply and amneter are not used. Visually examine any scratch marks, and check for compliance with the requirements of 3.6.3.

5.7 RESISTANCE TO IMPACT

Use the method given in Subsection 6.4 of Part I of the specification to test the protective cover of the specimen (see 5.2.1(d)), except that the striker is raised to a height that will allow it to fall with an energy of $3 \pm 0,25 \mathrm{~J}$. Check for compliance with the requirements of 3.6.3.
5.8 RESISTANCE TO ABRASION

5.8.1 Apparatus

a) Tube and funnel

A glass guide tube of length approximately 915 mm and of inside diameter approximately 20 mm , fitted with a funnel at the upper end and holding approximately 21 of sand. The guide tube is supported in a vertical position and a support is provided for holding the test specimen (see Fig. 4).
b) Sand

Sand of particle size such that at least 80% passes through a sieve of nominal aperture size 850 m and not more than 5\% passes through a sleve of nominal aperture size 600 m .

5.8.2 Procedure

Set up the guide tube in a vertical position. Place the test specimen (see $5.2 .1(e)$) approximately 25 mm below the orifice of the tube, with the protective cover of the specimen facing the tube and at an angle of approximately 45° to the vertical (see Fig. 4). So introduce sand into the funnel that it falls onto the protective cover of the test specimen, and continue until $20 \pm 0,51$ of sand has fallen. Stop the test and check for compliance with the requirements of 3.6.3.

It is recommended that a quantity of this sand be used not more than 50 times.

5.9 RESISTANCE TO BENDING

Use the method given in Subsection 6.7 of Part I of the specification, except that the rear surface of the test specimen (see $5.2 .1(f)$) is placed against a mandrel of diameter $75 \pm 1 \mathrm{~mm}$. Check for compliance with the requirements of 3.6.4.

5.10 STRENGTH OF ADHESION

5.10.1 Apparatus

A tensile testing machine having a fixed jaw and a movable jaw capable of a rate of separation of $300 \pm 5 \mathrm{~mm} / \mathrm{min}$, and fitted with a load indicator capable of showing the tensile load carried by the test specimen and of indicating this load to an accuracy of 1 or better.

5.10.2 Procedure

Double back the free end of one of the test strips at one end of the test specimen (see 5.2 .2) and strip it from the panel for a distance of approximately 25 mm . Grip that end of the test specimen in the movable jaw of the tensile testing machine, and grip the free end of the strip in the fixed jaw, ensuring that the pull on the strip will be applied slightly offset from, but parallel to that part of the strip adhering to the panel. (This can be achieved by inserting suitable packing in the movable jaw of the tensile testing machine.)

Set the movable jaw in motion and record the maximum force required to remove the strip of material from the surface of the panel.

Repeat the above procedure on the other 11 or 23 strips (as appropriate) and calculate the average force per millimetre of width of the strip required to remove the strip from the test panel. Check for compliance with 3.6.5.

Dimensions in millimetres

Fig. 1 - Shapes and Sizes of Letters and Numerals

Fig. 1 (continued)

9692

Fig. 1 (continued)

Fig. 1 (continued)

9694

Fig. 1 (continued)

107

FR2 (Typ.)

9695
Fig. 1 (continued)

Fig. 1 (continued)

Fig. 1 (continued)

9698
Fig : (continued)

Dimensions in millimetres

Fig. 2 - Borders for Registration Plates

Enle-ged side view detäl

Fig. 3 - Details of Registration Plate

All dimensions and angles are approximate Dimensions in millimetres

Fig. 4 - Apparatus for Abrasion Test

PART V

COLORIMETRY

OFFICIAL RECOMNEDDATIONS OF THE INTERNATIONAL COMISSION ON ILLUMINATION

Table of Contents:
Page
Preface 115
I Introduction 116
II Official Recommendations: 119

1. Recommendations concerning standard physical data 119
2. Recommendations concerning standard observer data 123
3. Recommendations concerning uniform color spacing 126
4. Recommendation concerning miscellaneous colori- metric practices and formulae 127
Explanatory Comments on the Official Recomendations 131
HEADINGS OF TABLES 135
TABLES $136 / 179$

COLORIMETRY

OFFICLAL RECOMMENDATIONS OF THE COMMISSION INTERNATIONALE DE L'ECLAIRAGE (CIE)

Preface

By general consent in all countries the specification of basic standards for use in colorimetry is the province of the Commission Internationale de l'Eclairage (CIE). The first major recommendations regarding colorimetric standards were made by the CIE in 1931, and these formed the basis of modern colorimetry. The original recommendations of 1931 were reviewed from time to time by the permanent CIE Colorimetry Committee and changes were made when these were considered necessary. New recommendations were added to supplement the existing ones or to broaden the scope of colorimetry in accordance with developments in practice and science.
The deliberations and recommendations made by the CIE Colorimetry Committee are recorded in the Proceedings of the various Sessions of the CIE. Unfortunately the distribution of these Proceedings has always been rather limited and ready access to them often proves difficult. In addition, much of the material published in the Proceedings is obsolete or inconsistent with current colorimetric practice. The recommendations, though much smaller in quantity than the general deliberations of the Committee, also present an incoherent picture. Many recommendations are merely proposals to study or work on certain topics that were considered important at the time.
In view of these circumstances the CIE Colorimetry Committee decided to prepare a special Document on Colorimetry that would be a consistent and comprehensive account of the present basic colorimetric standards according to the CIE. This document is not intended to be a text book on colorimetry but rather a source of reference to the basic standards that govern modern colorimetry.
The document has taken several years of preparation during which time a total of four successive drafts were submitted by the Chairman to the experts, corresponding members, and consultants of the CIE Colorimetry Committee. At its meeting in June 1969 in Stockholm the Colorimetry Committee agreed unanimously to submit the fourth draft (with minor revisions) of the document to the CIE Action Committee for formal approval by the member bodies of the CIE. Formal approval was given in 1970.
All those experts, corresponding members, and consultants of the CIE Colorimetry Committee (E-1.3.1) who have been on the Committee's roster during the period (1964 to 1969) of preparing the decument are listed below. The final English version has been translated into French by G. Bertrand (expert member from France) and into German by M. Richter (expert member from Germany).

> Gunter Wyszecki, Chairman,
> CIE Expert Committee E-1.3.1 (Colorimetry).

National Research Council of Canada Ottawa 7, Ontario Canada.

OFFICLAL RECOMMENDATIONS OF THE COMMISSION INTERNATIONALE DE L'ECLAIRAGE

(CIE)

The document is divided into two parts, (i) an introduction describing in general terms and in chronological order the more important activities and recommendations put forward by the CIE Colorimetry Committee, and (ii) the wording of all those recommendations regarding colorimetry now in force.

Introduction

At the 6th Session of the CIE held at Geneva in 1924 it was decided to set up a Study Group on Colorimetry ${ }^{1}$). This decision was taken in recognition of the fact that the measurement of color had become an important factor in several industries and scientific laboratories but none of the systems of color specification that existed at that tire could be considered satisfactory for general practice. Useful discussions on the problem, however, did not begin before 1928, the year of the 7th Session of the CIE held at Saranac Inn, N.Y. ${ }^{2}$). At that time a working program was proposed to establish suitable basic standards which would put colorimetric practice on a unified basis. In particular, it was agreed that efforts should be made to reach agreements on a) colorimetric nomenclature, b) a standard daylight for colorimetry, and c) the 'sensation curves' of the average human observer with normal color vision. The National Committee of Great Britain was asked to undertake the duties of the CIE Secretariat on the subject of colorimetry.
At the 8th Session of the CIE held at Cambridge, England, in 1931, the first major recommendations were made which taid the basis for modern colorimetry ${ }^{3}$). There was a total of five recommendations. Recommendations 1,4 and 5 established the CIE 1931 standard observer and colorimetric coordinate system, recommendation 2 specified three standard sources (A, B, and C), and recommendation 3 standardized the illuminating and viewing conditions for measuring reflecting surfaces and the standard of reflectance in the form of a magnesium-oxide surface.
The CIE 1931 standard colorimetric observer was defined by two different but equivalent sets of color-matching functions (spectral tristimulus values) based on the photopic lumious efficiency function $\mathrm{V}(\lambda)$, already adopted by the CIE in 1924, and on experimental work carried out by Guild ${ }^{4}$) and Wright ${ }^{5}$). The first set of color-matching functions, $\bar{r}(\lambda), \bar{g}(\lambda), \bar{b}(\lambda)$, is expressed in terms of spectral stimuli of wavelengths $700.0 \mathrm{~nm}(R), 546.1 \mathrm{~nm}(\mathrm{G})$, $435.8 \mathrm{~nm}(\mathrm{~B})$ as the reference stimuli with the units adjusted so that the chromaticity coordinates of the equienergy stimulus are all equal. (The equi-energy stimulus may be defined as a stimulus whose total radiant power at all wavelengths between any two limiting wavelengths within the visible spectrum is a constant multiple of the difference between these limiting wavelengths). The luminances L_{R}, L_{G}, L_{B}, of unit quantities of the reference stimuli $(R),(G),(B)$ are in the ratios $1.0000: 4.5907: 0.0601$; their radiances are in the ratios $72.0962: 1.3791: 1.0000$.
The second set of color-matching functions, $\bar{x}(\lambda), y(\lambda), z(\lambda)$, was recommended for reasons of more convenient application in practical colorimetry. Its derivation from the first set was based on a proposal by Judd ${ }^{6}$) and involved a linear transformation. The coefficients of the transformation were chosen so as to avoid negative values of $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$ at all wavelengths. The units of the new reference stimuli $(X),(Y),(Z)$ were adjusted to make the chromaticity coordinates of the equi-nergy stimulus all equal. The transformation coefficients were further adjusted so that first no part of the spectrum locus on the chromaticity diagram was very much closer to the equi-energy point than any other part; second the dominant wavelength of one (Z) of the reference stimuli corresponded closely to the wavelength of the spectral stimulus perceived under usual viewing conditions to be psychologically unitary blue, neither reddish nor greenish; and third, the luminances $\mathrm{L}_{\mathrm{X}}, \mathrm{L}_{\mathbf{Y}}, \mathrm{L}_{\mathbf{Z}}$, of unit quantities of the reference stimuli were equal to $0,1,0$, respectively, resulting in a set of color-matching functions in which $\bar{y}(\lambda)$ became identical to $V(\lambda)$.
CIF. standard sources $\mathrm{A}, \mathrm{B}, \mathrm{C}$ were intended to be representative of interior illumination by tungsten filament lamps (Source A), of illumination by direct sunlight (Source B), and of illumination by average daylight (Source C). CIE source A was a gas-filled coiled tungsten-filament lamp operating at a color temperature of 2848 K
($c_{2}=1.4350 \cdot 1 \sigma^{2} \mathrm{~m} \cdot \mathrm{~K}$) and CIE sources B and C were produced by combining source A with liquid fulters whose cell construction and chemical compositions were specified in accordance with a proposal by Davis and Gibson ${ }^{7}$). The directions of illumination and viewing to be used in the colorimetry of opaque objects were specified as 45 degrees and normal to the surface, respectively. This recommendation was made in accordance with general practice prevalent at that time and in full recognition of the fact that colorimetric measurements may be affected greatly by variations of the illuminating and viewing conditions.
The standard of reflectance was specified in the form of a (smoked) magnesium-oxide surface whose spectral reflectance was taken to be equal to unity at all wavelengths within the visible spectrum. Reflectance measurements of a test object against this standard were to be made under the same illuminating and viewing conditions.
In subsequent work of the CIE Colorimetry Committee new knowledge regarding colorimetry was considered continuously. The original recommendations of 1931 were reviewed from time to time and changes made when these were considered necessary. New recommendations were added to supplement the existing ones or to broaden the scope of colorimetry in accordance with the developments in practice and science.
At the 12th Session of the CIE held in Stockholm in 1951 it was decided to keep unchanged the spectral power distribution of standard source A and this necessitated changing its definition to a gas-filled coiled tungsten-filament lamp operating at a color temperature of approximately $2854 \mathrm{~K}\left(\mathrm{c}_{2}=1.4380 \cdot 1 \sigma^{2} \mathrm{~m} \cdot \mathrm{~K}\right)$ according to the International Temperature Scale of 1948^{8}). In 1968 the Comité International des Poids et Mesures adopted a slight modification of the International Practical Temperature Scale of 1948 (amended in 1960) and the value of c_{2} is now equal to $1.4388 \cdot 1 \sigma^{2} \mathrm{~m} \cdot \mathrm{~K}$. The change leads to another increase of the color temperature of source A, to approximately 2856 K , which has been introduced in this document together with corresponding changes to all other standard illuminants and sources presently recommended by the CIE. At the 14th Session of the CIE held at Brussels in 1959 it was decided to consider the 'perfect reflecting diffuser' for ultimate adoption as the standard of reflectance to supersede the magnesium-oxide surface ${ }^{9}$).
A new set of Tables was worked out for the color-matching functions of the CIE 1931 standard colorimetric observer and these are published for the first time in this document. The new Tables are essentially the same as the original 1931 Tables but contain interpolated values at one nanometer intervals and cover an extended wavelength range from 360 to 830 nm . The original values were also smoothed slightly to eliminate small irregularities. The new values have become the official values for the CIE 1931 standard colorimetric observer. The CIE 193: standard colorimetric observer has been of continuous concern to the CIE Colorimetry Committee because of a number of reports indicating that the standard observer data may not adequately represent the color-matching properties of the average observer with normal color vision ${ }^{10}$). Particularly, it was suggested that in the wavelength region 380 to 460 nm the values of $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$ were too low. The origin of this discrepancy was traced to the CIE 1924 luminous efficiency function $V(\lambda)$ which Guild and Wright had used in the derivation of their color-mixture data. In 1951 Judd reviewed the problem, and on the basis of new determinations of luminous efficiency values in the short-wave region of the spectrum he calculated revised color-matching functions ${ }^{11}$). The CIE then recommended that the National Committees give high priority to the researches that they had started on the luminous efficiency and color-matching functions, with a view to supplying the basis for a possible revision of the standard observer. Also the merits of the various ways of expressing the revision were to be studied.
This working program was pursued in great detail culminating in the decision to retain the CIE 1931 standard observer data for colorimetry but to supplement it by new color-matching functions $\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda), \bar{z}_{10}(\lambda)$ recommended for use whenever a more accurate correlation with visual color matching of fields of large angular subtense (more than 4° at the eye of the observer) is desired ${ }^{12}$). Field tests on metameric matches in the areas of subtense below 4° did not show divergencies from the predictions of the CIE 1931 standard colorimetric observer data that were considered of significant magnitude to warrant its revision.
The new color-matching functions, $\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda), \bar{z}_{10}(\lambda)$, defining the supplementary standard colorimetric observer were adopted officially in 1964; they were derived from experimental data supplied by Stiles and Burch ${ }^{13}$) and Speranskaya ${ }^{14}$) and were first published in 1959^{15}). The experimental color-matching data were obtained for a 10° field by a direct method which did not involve an appeal to heterochromatic matching, but did depend on the actual measurement of the relative power distribution in the spectrum studied. The derivation of an average set of color-matching functions suitable for the purpose of practical colorimetry was carried out by Judd and was based on a coordinate system similar to that associated with the CIE 1931 standard colorimetric observer. The $\bar{y}_{10}(\lambda)$ function was evaluated in accordance with luminous efficiency values determined by Stiles and Burch for the instrumental stimuli by means of flicker comparisons in the 10° field. The units of the new reference stimuli $\left(\mathrm{X}_{10}\right),\left(\mathrm{Y}_{10}\right),\left(\mathrm{Z}_{10}\right)$ were chosen so as to make the chromaticity coordinates of the equi-energy stimulus all equal. The large-field color-matching data as defined by the CIE 1964 supplementary standard colorimetric
observer are intended to apply to matches where the luminance and the relative spectral power distributions of the matched stimuli are such that no participation of the rod receptors of the visual mechanism is to be expected. This condition of observation is important as 'rod intrusion' may upset the predictions of the standard observer. Field tests have been conducted with the large-field color-matching functions, $\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda), \bar{x}_{10}(\lambda)$, and the Colorimetry Committee considered the results of these tests as being sufficiently conclusive to warrant the formal adoption of the new data.
In recent years the problem of standard daylight illuminants has been given special attention by the Colorimetry Committee. Extensive new data on natural daylight were made available by various investigators and the Committee decided in 1963 that sufficient evidence was then available to supplement the existing CIE standard illuminants by new illuminants more adequately representing phases of natural daylight ${ }^{12}$). These illuminants were to be defined by relative power distributions over the spectral region 300 to 830 nm . The spectral region covered the near ultraviolet because of the increasing demand for more accurate colorimetry of fluorescent materials. The CIE standard sources B and C do not adequately represent sunlight or daylight, particularly in the ultraviolet region.
The new recommendation on standard illuminants specifies a standard illuminant D_{65} with a correlated color temperature of approximately 6500 K and states that for general use in colorimetry illuminants A and D_{65} should suffice. It is further recommended that whenever daylight other than that defined by the new standard D_{65} is desired a standardized set of formulae and tables be used to calculate the appropriate spectral power distribution corresponding to any given correlated color temperature from 4000 K to 25000 K . This recommendation was based on a report prepared by Judd, MacAdam, and Wyszecki, with the collaboration of Budde, Condit, Henderson and Simonds ${ }^{16}$).
Another important problem the Colorimetry Committee has dealt with over several years is that concerning a coordinate system providing a three-dimensional spacing perceptually more uniform than that provided by the (XYZ)-system. There is a growing demand for such a system and many different proposals have been forwarded over the years by different investigators. The committee considered a number of the existing systems and at the 14th Session of the CIE held at Brussels in 1959 a proposal was made to adopt the MacAdam uniform-chromaticity scale diagram of 1937^{17}) as a standard UCS diagram. The proposal was approved officially by the CIE in 1960 and the diagram is now known as the CIE 1960 UCS diagram. An extension of the UCS diagram to three dimensions was proposed to the Committee by Wyszecki ${ }^{18}$) and this formed the basis for a CIE recommendation known as the CIE 1964 ($\mathrm{U}^{*}, \mathrm{~V}^{*}, \mathrm{~W}^{*}$) system ${ }^{12}$), referred to in the CIE Vocabulary as the CIE 1964 Uniform Color Space. (The symbols $\mathrm{U}^{*}, \mathrm{~V}^{*}, W^{*}$ were used to distinguish these variables from the tristimulus values $\mathrm{U}, \mathrm{V}, \mathrm{W}$, to which they are related by non-linear equations). In this system a measure ΔE of the perceptual size of the difference between two given colors is obtained by the square root of the sum of the squares of the differences between corresponding coordinates U^{*}, V^{*}, W^{*}, of the two colors. The CIE recommendation was put forward in an attempt to unify the currently very diverse practice of calculation of color differences. The CIE colorimetry committee is continuing its work on color-difference formulae. At a meeting in June 1967 in Washington a detailed working program was adopted that involves the study of not only the formula recommended provisionally in 1964 but also three other formulae currently under consideration as improvements of the CIE 1964 color-difference formula ${ }^{19}$). The CIE Colorimetry Committee has concerned itself with several other colorimetric problems not specifically mentioned in this introductory note. Some of these problems have been resolved and have resulted in official recommendations and these are included in the main part of this document. Other problems were of the nature of 'further study' and either did not result in official recommendations or are still being studied. These activities are not recorded in this document but can be found in the Proceedings of the various Sessions of the CIE. Neither does this document include any recommendations regarding colorimetric nomenclature and methods of assessing the color rendering properties of light sources. Both subjects used to be within the terms of reference of the Colorimetry Committee but for several years now have been subjects of separate committees ${ }^{20,21}$) which have prepared (or will prepare) separate documents.

OFFICIAL RECOMMENDATIONS

The wording of the original recommendations has been altered to be consistent with modern nomenclature, and in some cases the original recommendations have also been modified in content to bring them into line with present day thinking and practice. The versions given in this document are the official recommendations now in force and supersede all previous recommendations published in the CIE Proceedings. It is anticipated that in all subsequent CIE Proceedings an official statement will be made regarding the recommendations given in this document, and, if required, amendments will be announced at that time.
The recommendations are divided into the following four groups:

1. Recommendations concerning standard physical data,
2. Recommendations concerning standard observer data,
3. Recommendations concerning uniform color spacing,
4. Recommendations concerning miscelianeous colorimetric practices and formulae.

1. RECOMMENDATIONS CONCERNING STANDARD PHYSICAL DATA

1.1. Standard illuminants for colorimetry $\left.{ }^{(2)}\right)^{*}$)

It is recommended that the following illuminants, defined by relative spectral power distributions given in Table 1.1.1 be used for general colorimetry:

Illuminant A : Representing light from the full radiator at absolute temperature 2856 K (approximately) according to "The International Practical Temperature Scale, 1968"1b).
Note: Table 1.1.S gives the relative spectral power distribution of illuminant A from 300 to 830 nm at 1 nm intervals and with six significant figures.

Illuminant B: Representing direct sunlight with a correlated color temperature of approximately 4874 K1c).
Illuminant C: Representing average daylight with a correlated color temperature of approximately $6774 \mathrm{~K} \mathbf{~} \mathbf{c}$).
Illuminant $D_{6 S}$: Representing a phase of daylight with a correlated color temperature of approximately $6504 \mathrm{~K}^{1 \mathrm{c}}$)
Note: Illuminant D_{65} supplements the illuminants A, B and C. For general use in colorimetry illuminants A and D_{65} should suffice ${ }^{1 d}$).

Other Illuminants D:

It is recommended that whenever a phase of daylight other than that defined by the standard D_{65} is desired the following rules be observed to define it ${ }^{l e}$):
a) Chromaticity. The 1931 (x, y) chromaticity coordinates of the daylight (D) to be defined must satisfy the following relation:

$$
y_{D}=-3.000 x_{D}{ }^{2}+2.870 x_{D}-0.275
$$

with x_{D} being within the range 0.250 to 0.380 . The correlated color temperature $T_{C}\left(c_{2}=1.4388 \cdot 1 \sigma^{2} \mathrm{~m} \cdot \mathrm{~K}\right)$ of daylight D is related to x_{D} by the following formulae based on normals to the Planckian locus on the CIE 1960 UCS diagram.

[^0](i) for correlated color temperatures from approximately 4000 K to 7000 K :
$$
x_{D}=-4.6070 \frac{10^{9}}{T_{c}^{3}}+2.9678 \frac{10^{6}}{T_{c}^{2}}+0.09911 \frac{10^{3}}{T_{c}}+0.244063
$$
(ii) for correlated color temperatures from 7000 K to approximately 25000 K :
$$
x_{D}=-2.0064 \frac{10^{9}}{T_{c}^{3}}+1.9018 \frac{10^{6}}{T_{c}^{2}}+0.24748 \frac{10^{3}}{T_{c}}+0.237040
$$
b) Relative spectral power distribution. The relative spectral power distribution $S(\lambda)$ of daylight D is to be computed from
$$
S(\lambda)=S_{0}(\lambda)+M_{1} S_{1}(\lambda)+M_{2} S_{2}(\lambda)
$$
where $S_{0}(\lambda), S_{1}(\lambda), S_{2}(\lambda)$ are functions of wavelength, λ, given in Table 1.1.2, and M_{1}, M_{2} are factors whose values are related to the chromaticity coordinates x_{D}, y_{D} as follows:
\[

$$
\begin{aligned}
& M_{1}=\frac{-1.3515-1.7703 x_{D}+5.9114 y_{D}}{0.0241+0.2562 x_{D}-0.7341 y_{D}} \\
& M_{2}=\frac{0.0300-31.4424 x_{D}+30.0717 y_{D}}{0.0241+0.2562 x_{D}-0.7341 y_{D}}
\end{aligned}
$$
\]

c) Calculations ${ }^{1 f}$. To facilitate the practical use of this recommendation values of x_{D}, y_{D}, M_{1}, and M_{2} for correlated color temperatures in the range 4000 to 25000 K are given in Table 1.1.3. Although the formulae of this recommendation enable the relative spectral power distribution for any correlated color temperature to be calculated, and the values given in Table 1.1.3 facilitate their calculations for a wide range of correlated color temperature, it is recommended that in the interests of standardization, D_{65} be used whenever possible; when D_{65} cannot be used, it is recommended that one of the two relative spectral power distributions given in Table 1.1.4 (D_{55} and D_{75}) having correlated color temperatures of approximately 5503 K and 7504 K , be used whenever possible.

Note 1:
Seasonal variations in the spectral power distribution of daylight are known to occur, particularly in the ultraviolet region, but this recommendation should be used pending the availability of further information on these variations.

Note 2:

The spectral power distributions of daylight D produced by this recommendation are based on experimental observations over the range 330 to 700 nm , and on extrapolation in the ranges 300 to 330 and 700 to 830 nm . The extrapolated values are believed to be accurate enough for normal colorimetric purposes, but should not be used for other purposes if high accuracy in these regions is necessary.

Note 3:
The relative spectral power distributions of daylight D are given in these recommendations at every 10 nm and represent values averaged over the wavelength ranges from -5 to +5 nm from the nominal values. If for the purpose of colorimetric computation values are required at closer intervals they should be interpolated from the 10 nm values linearly.
Table 1.1.5 gives the relative spectral power distribution of D_{65} at intervals of 1 nm and with six significant figures. The values of Table 1.1.5 have been calculated by following the procedure stated in paragraphs a) and b) above and then interpolating linearly.

In calculating $S(\lambda)$ the factors M_{1} and M_{2} were used with three decimal figures as given in Table 1.1.3. When the values of Table 1.1.5 are rounded to one decimal figure the values of Table 1.1.1 are obtained.

Note 4:
When samples exhibiting fluorescence excited by ultraviolet radiation are involved, one of the illuminants defined in these recommendations should be used to represent daylight instead of standard illuminants B and C which have insufficient ultraviolet contents.

Note 5:
The chromaticity coordinates of the illuminants $A, B, C, D_{55}, D_{65}, D_{75}$, calculated from the values of $S(\lambda)$ given in Tables 1.1.1, 1.1.4 and 1.1.5, are given in Table 1.1.6.

1.2 Artificial sources representative of standard illuminants 1 a)

It is recommended that the following artificial sources be used if it is desired to realize the standard illuminants defined in Section 1.1 for actual laboratory inspection.

Source A.
Illuminant A is to be realized by a gas-filled coiled-tungsten filament lamp operating at a correlated color temperature of 2856 K ($\mathrm{c}_{2}=1.4388 \cdot 1 \sigma^{2} \mathrm{~m} \cdot \mathrm{~K}$). A lamp with a fused-quartz envelope or window is recommended if the spectral power distribution of the ultraviolet radiation of illuminant A is to be realized more accurately.

Source B:
Illuminant B is to be realized by source A, combined with a filter consisting of a layer, one centimeter thick of each of two solutions B_{1} and B_{2}, contained in a double cell made of colorless optical glass. The solutions are to be made up as follows:

Solution B_{1} :

Copper Sulphate $\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$	2.452	g
Mannite $\left[\mathrm{C}_{6} \mathrm{H}_{8}(\mathrm{OH})_{6}\right]$	2.452	g
Pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$	30.0	ml
Distilled water to make	1000.0	ml

Solution B_{2} :
Cobalt Ammonium Sulphate
$\left[\mathrm{CoSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right.$]
Copper Sulphate $\left(\mathrm{CuSO}_{4} \cdot \mathbf{5 H}_{2} \mathbf{O}\right)$
$16.11 \quad \mathrm{~g}$
Sulphuric Acid (density $1.835 \mathrm{~g} \cdot \mathrm{~m}^{1}$)
10.0 ml

Distilled water to make $\quad 1000.0 \mathrm{ml}$

Source C:

Illuminant C is to be realized by source A , combined with a filter consisting of a layer, one centimeter thick of each of two solutions C_{1} and C_{2}, contained in a double cell made of colorless optical glass. The solutions are to be made up as follows:

Solution C_{1} :
Copper Sulphate $\left(\mathrm{CuSO}_{4} \cdot \mathrm{SH}_{2} \mathbf{0}\right)$
3.412 g

Mannite $\left[\mathrm{C}_{6} \mathrm{H}_{8}(\mathrm{OH})_{6}\right.$]
3.412 g

Pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$
30.0 ml

Distilled water to make
1000.0 ml

Solution C_{2} :

Cobalt Ammonium Sulphate
$\left.\left[\mathrm{CoSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)\right]$
Copper Sulphate ($\mathrm{CuSO}_{4} \cdot \mathrm{SH}_{2} \mathrm{O}$)
Sulphuric Acid (density $1.835 \mathrm{~g} \cdot \mathrm{mI}^{1}$)
Distilled water to make

122
30.58 g
22.52 g
10.0 ml
1000.0 ml

Source D_{65} :

At present no artificial source is recommended to realize illuminant D_{65} or any other illuminant \mathbf{D} of different correlated color temperature. It is hoped that new developments in light sources and filters will soon offer a sufficient basis for a CIE recommendation.

Note 1:
The artificial sources defined above and recommended as representative sources for standard illuminants are to be named 'CIE standard sources for colorimetry'.

Note 2:
Whenever the highest accuracy of the spectral power distribution of a standard source is required, it is advisable to make a spectroradiometric calibration of the actual source used, because the relative spectral powers of the source may not exactly coincide at all wavelengths with those defining the corresponding standard illuminant.

1.3 Standard of reflectance factor ${ }^{2}$)

The perfect reflecting diffuser is recommended as the reference standard. It is defined as the ideal uniform diffuser with a reflectance equal to unity. Smoked magnesium oxide is superseded from January 1, 1969.

1.4 Illuminating and viewing conditions ${ }^{3)}$

It is recommended that the colorimetric specification of opaque specimens be given so as to correspond to one of the following illuminating and viewing conditions:
a) $45^{\circ} /$ normal (abbreviation, $45 / 0$):

The specimen is illuminated by one or more beams whose axes are at an angle of $45^{\circ} \pm 5^{\circ}$ from the normal to the specimen surface. The angle between the direction of viewing and the normal to the specimen should not exceed 10°. The angle between the axis and any ray of an illuminating beam should not exceed 5°. The same restriction should be observed in the viewing beam.
b) Normal $/ 45^{\circ}$ (abbreviation, $0 / 45$):

The specimen is illuminated by a beam whose axis is at an angle not exceeding 10 degrees from the normal to the specimen. The specimen is viewed at an angle of $45^{\circ} \pm 5^{\circ}$ from the normal. The angle between the axis and any ray of the illuminating beam should not exceed 5°. The same restriction should be observed in the viewing beam.
c) Diffuse/normal (abbreviation, d/0):

The specimen is illuminated diffusely by an integrating sphere. The angle between the normal to the specimen and the axis of the viewing beam should not exceed 10°. The integrating sphere may be of any diameter provided the total area of the ports does not exceed 10 percent of the internal reflecting sphere area. The angle between the axis and any ray of the viewing beam should not exceed 5°.
d) Normal/diffuse (abbreviation, $0 / \mathrm{d}$):

The specimen is illuminated by a beam whose axis is at an angle not exceeding 10° from the normal to the specimen. The reflected flux is collected by means of an integrating sphere. The angle between the axis and any ray of the illuminating beam should not exceed 5°. The integrating sphere may be of any diameter provided the total area of the ports does not exceed 10 percent of the internal reflecting sphere area.

Note 1:
For the conditions 'Diffuse/normal' and 'Normal/diffuse' the influence of the specular component of specimens with mixed reflection may be reduced by the use of a gloss trap. If a gloss trap is used details of its size, shape, and position should be given.

Note 2:
In the 'Normal/45' and the 'Normal/diffuse' conditions specimens with mixed reflection should not be measured with strictly normal illumination.

Note 3:
The ' $45^{\circ} /$ normal' condition gives the radiance factor $\beta_{4} / / 0$. The 'Normal/ 45°, condition gives the radiadance factor $\beta_{0 / 45}$. The 'Diffuse/normal' condition gives the radiance factor $\beta_{\mathrm{d} / 0}$. The 'Normal/diffuse' condition gives the reflectance ρ.

Note 4:
It is important that the particular illuminating and viewing conditions used be specified even if they are within the range of one of the recommended standard conditions.

2. RECOMMENDATIONS CONCERNING STANDARD OBSERVER DATA4)

2.1 CIE 1931 standard colorimetric observer

It is recommended that colorimetric specifications of color stimuli be based on the spectral tristimulus values $\bar{x}(\lambda)$, $\bar{y}(\lambda), \bar{z}(\lambda)$, given in Table 2.1, whenever correlation with visual color matching of fields of angular subtense between 1 and 4° at the eye of the observer is desired. The spectral tristimulus values $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$ as given in Table 2.1 define the CIE 1931 standard colorimetric observer.

Note 1:
$\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$ refer to a set of reference stimuli (X), (Y), (Z) chosen for reasons of convenience in colonmetric computations.

Note 2:

The $\bar{y}(\lambda)$ function is identical with $V(\lambda)$, the photopic luminous efficiency function defining the standard observer for photometry.

Note 3:
If the spectral tristimulus values of Table 2.1 are required at closer intervals than 1 nm intervals, a linear interpolation should be used.

Note 4:
The chromaticity coordinates $x(\lambda), y(\lambda), z(\lambda)$ of the spectral stimuli are given in Table 2.1 and were derived from $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$ by forming the ratios

$$
\begin{aligned}
& x(\lambda)=\frac{\bar{x}(\lambda)}{\bar{x}(\lambda)+\bar{y}(\lambda)+\bar{z}(\lambda)} \\
& y(\lambda)=\frac{\bar{y}(\lambda)}{\bar{x}(\lambda)+\bar{y}(\lambda)+\bar{z}(\lambda)} \\
& z(\lambda)=\frac{\bar{z}(\lambda)}{\bar{x}(\lambda)+\bar{y}(\lambda)+\bar{z}(\lambda)}
\end{aligned}
$$

Note 5:
124
The chromaticity coordinates x_{E}, y_{E}, z_{E} of the equienergy stimulus derived from the sums $\Sigma \bar{x}(\lambda), \Sigma \bar{y}(\lambda), \Sigma \bar{z}(\lambda)$ of Table 2.1 are

$$
\begin{aligned}
& x_{E}=0.333314 \\
& y_{E}=0.333288 \\
& x_{E}=0.333398
\end{aligned}
$$

They differ somewhat from the original 1931 data due to the smoothing and extrapolation of the spectral tristimulus values (see also Section 2.3, Note 1). The original data are as follows:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{E}}=0.333332 \\
& \mathrm{y}_{\mathrm{E}}=0.333333 \\
& \mathrm{z}_{\mathrm{E}}=0.333335
\end{aligned}
$$

2.2 CIE 1964 supplementary standard colorimetric observer

It is recommended that colorimetric specifications of color stimuli be based on the spectral tristimulus values $\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda), \bar{z}_{10}(\lambda)$, given in Table 2.2, whenever correlation with visual color matching of fields of angular subtense more than 4° at the eye of the observer is desired. The spectral tristimulus values $\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda), \bar{z}_{10}(\lambda)$ as given in Table 2.2 define the CIE 1964 supplementary standard colorimetric observer.

Note 1:
$\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda), \bar{z}_{10}(\lambda)$ refer to a set of reference stimuli $\left(X_{10}\right),\left(Y_{10}\right),\left(Z_{10}\right)$ chosen for reasons of convenience in colorimetric computations.

Note 2:

If the spectral tristimulus values of Table 2.2 are required at closer intervals than 1 nm intervals, a linear interpolation should be used.

Note 3:

The chromaticity coordinates $\mathrm{x}_{10}(\lambda), \mathrm{y}_{10}(\lambda), \mathrm{z}_{10}(\lambda)$ of the spectral stimuli are given in Table 2.2 and were derived from $\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda), \bar{z}_{10}(\lambda)$ by forming the ratios

$$
\begin{aligned}
& x_{10}(\lambda)=\frac{\bar{x}_{10}(\lambda)}{\bar{x}_{10}(\lambda)+\bar{y}_{10}(\lambda)+\bar{z}_{10}(\lambda)} \\
& y_{10}(\lambda)=\frac{\bar{y}_{10}(\lambda)}{\bar{x}_{10}(\lambda)+\bar{y}_{10}(\lambda)+\bar{z}_{10}(\lambda)} \\
& z_{10}(\lambda)=\frac{\bar{z}_{10}(\lambda)}{\bar{x}_{10}(\lambda)+\bar{y}_{10}(\lambda)+\bar{z}_{10}(\lambda)}
\end{aligned}
$$

Note 4:
The chromaticity coordinates $\mathrm{x}_{10, \mathrm{E}}, \mathrm{y}_{10, \mathrm{E}}, \mathrm{z}_{10, \mathrm{E}}$ of the equi-energy stimulus derived from the sums $\Sigma \bar{x}_{10}(\lambda)$, $\Sigma \bar{y}_{10}(\lambda), \Sigma_{10}(\lambda)$ of Table 2.2 are

$$
\begin{aligned}
& x_{10, E}=0.333296 \\
& y_{10, E}=0.333335 \\
& z_{10, E}=0.333369
\end{aligned}
$$

2.3 Abridged Tables of spectral tristimulus values

In most colorimetric computations involving the spectral tristimulus values of either the CIE 1931 standard colorimetric observer or the CIE 1964 supplementary standard colorimetric observer, it should suffice to use rounded-off values of the respective spectral tristimulus values at 5 nanometer intervals from 380 to 780 nm . Tables 2.3.1 and 2.3 .2 give the recommended abridged sets of spectral tristimulus values for both standard observers and corresponding chromaticity coordinates. In some colorimetric computations it might be sufficient to use the spectral tristimulus values at 10 nm intervals. If this is desired Tables 2.3.1 and 2.3.2 are recommended with all values at wavelengths $385,395, \ldots 775 \mathrm{~nm}$ being ignored.
The use of abridged tables will generally reduce the accuracy of colorimetric computations to some degree and it is recommended that.results obtained in this way be accompanied with a statement regarding the computational procedure followed.

Note 1:
The spectral tristimulus values $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$ given in Table 2.3 .1 agree closely with those defined originally in 1931. Three minor changes have been introduced. At $\lambda=775 \mathrm{~nm}$ the new value of $\bar{x}(\lambda)$ is 0.0001 instead of 0.0000 ; at $\lambda=555 \mathrm{~nm} \bar{y}(\lambda)$ is 1.0000 instead of 1.0002 , and at $\lambda=740 \mathrm{~nm} \bar{y}(\lambda)$ is 0.0002 instead of 0.0003 . These changes are considered insignificant in most colorimetric computations.

Note 2:
The chromaticity coordinates x_{E}, y_{E}, z_{E} of the equi-energy stimulus derived from the sums $\Sigma x(\lambda), \Sigma y(\lambda), \Sigma z(\lambda)$ of Table 2.3.1 are for summations at 5 nm intervals:

$$
\begin{aligned}
& x_{E}=0.333334 \\
& y_{E}=0.333330 \\
& z_{E}=0.333336,
\end{aligned}
$$

and for summation at 10 nm intervals:

$$
\begin{aligned}
& x_{E}=0.333381 \\
& y_{E}=0.333444 \\
& z_{E}=0.333175
\end{aligned}
$$

The chromaticity coordinates $x_{10, E}, y_{10, E}, z_{10, E}$ of the equi-energy stimulus derived from the sums $\Sigma \bar{x}_{10}(\lambda)$, $\Sigma \bar{y}_{10}(\lambda), \Sigma \bar{z}_{10}($) of Table 2.3.2 are for summation at 5 nm intervals:

$$
\begin{aligned}
& x_{10, E}=0.333296 \\
& y_{10, E}=0.333339 \\
& z_{10, E}=0.333366
\end{aligned}
$$

and for summation at 10 nm intervals:

$$
\begin{aligned}
& x_{10, E}=0.333336 \\
& y_{10, E}=0.333330 \\
& z_{10, E}=0.333333
\end{aligned}
$$

126

3. RECOMMENDATIONS CONCERNING UNIFORM COLOR SPACINGSa)

3.1 CIE 1960 UCS diagram

The use of the following chromaticity diagram is provisionally recommended whenever a projective transformation of the (x, y)-diagram yielding color spacing perceptually more nearly uniform than that of the (x, y)-diagram is desired. The chromaticity diagram is produced by plotting $u=4 X /(X+15 Y+3 Z)$ as abscissa and $v=$ $6 \mathrm{Y} /(\mathrm{X}+15 \mathrm{Y}+3 \mathrm{Z})$ as ordinate, in which $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are tristimulus values.

Note 1 :
The color spacing afforded by this chromaticity diagram is known to be perceptually more nearly uniform than the CIE (x, y)-chromaticity diagram for observation of specimens having negligibly different luminances ($\Delta Y \rightarrow 0$). This diagram is intended to apply to comparisons of differences between object colors of the same size and shape viewed in identical white to middle-gray surroundings by an observer photopically adapted to a field of chromaticity not too different from that of average daylight.

Note 2:
The same chromaticity diagram is produced by plotting $u=4 x /(-2 x+12 y+3)$ as abscissa and $v=$ $6 y /(-2 x+12 y+3)$ as ordinate, where x, y are chromaticity coordinates.

Note 3:

If the angle subtended at the eye by the pairs of specimens being compared is more than 1° and less than or equal to 4°, the tristimulus values $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ (or chromaticity coordinates, x, y), calculated with respect to the CIE 1931 standard colorimetric observer should be used for the calculation of u and v. If this angular subtense is greater than 4°, the tristimulus values $\mathrm{X}_{10}, \mathrm{Y}_{10}, \mathrm{Z}_{10}$, (or chromaticity coordinates $\mathrm{X}_{10}, \mathrm{y}_{10}$) calculated with respect to the CIE 1964 supplementary standard colorimetric observer should be used for the calculation of u_{10} and v_{10}.

Note 4:
To facilitate colorimetric calculations in terms of the CIE 1960 UCS diagram ${ }^{5 b}$) Tables 2.3.3 and 2.3.4 have been prepared which give the spectral tristimulus values $\bar{u}(\lambda), \bar{v}(\lambda), \bar{w}(\lambda)$ and corresponding chromaticity coordinates $u(\lambda), v(\lambda), w(\lambda)$ derived from the CIE 1931 and CIE 1964 standard spectral tristimulus values defined respectively in Tables 2.1 and 2.2, by using the following transformation equations:

$$
\begin{aligned}
& \bar{u}(\lambda)=\frac{2}{3} \bar{x}(\lambda) \\
& \bar{v}(\lambda)=\bar{y}(\lambda) \\
& \bar{w}(\lambda)=\frac{1}{2}[-\bar{x}(\lambda)+3 \bar{y}(\lambda)+\bar{z}(\lambda)] \\
& \text { and } \\
& u(\lambda)=\bar{u}(\lambda) /[\bar{u}(\lambda)+\bar{w}(\lambda)+\bar{w}(\lambda)] \\
& v(\lambda)=\bar{w}(\lambda) /[\bar{u}(\lambda)+\bar{w}(\lambda)+\bar{w}(\lambda)] \\
& w(\lambda)=\bar{w}(\lambda) /[\bar{u}(\lambda)+\bar{v}(\lambda)+\bar{w}(\lambda)]
\end{aligned}
$$

The values of Table 2.3.3 are obtained by inserting in the above equations the corresponding values of $\bar{x}(\lambda), \bar{y}(\lambda)$, $\bar{z}(\lambda)$ of Table 2.1. The values of Table 2.3.4 are obtained by replacing $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$ by the corresponding values of $\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda), \bar{z}_{10}(\lambda)$ of Table 2.2.
The transformations were made by using all figures of the spectral tristimulus values of Tables 2.1 and 2.2, but the results given in Tables 2.3.3 and 2.3.4 have been rounded to four decimals both for the spectral tristimulus values and the chromaticity coordinates.

3.2 CIE 1964 uniform color space

Pending the development of an improved coordinate system, the use of the following coordinate system is recommended whenever a three-dimensional spacing perceptually more nearly uniform than that provided by the (XYZ)-system is desired. The recommended coordinate sysiem is formed by plotting the variables $\mathrm{U}^{*}, \mathrm{~V}^{*}$ and W^{*} along orthogonal axes where U^{*}, V^{*} and W^{*} are defined in terms of the tristimulus values X, Y, Z as:

$$
\begin{gathered}
W^{*}=25 Y^{1 / 3}-17,1 \leqslant Y \leqslant 100 \\
U^{*}=13 W^{*}\left(u-u_{0}\right) \\
V^{*}=13 W^{*}\left(v-v_{0}\right)
\end{gathered}
$$

where u and v are defined as follows:

$$
u=\frac{4 X}{(X+15 Y+3 Z)} ; \quad v=\frac{6 Y}{(X+15 Y+3 Z)}
$$

and u_{0}, v_{0} are values of these variables for the nominally achromatic color placed at the origin of the (U^{*}, V^{*})-system. (This is an extension of the CIE 1960 UCS diagram to three dimensions).

Note 1:
For object colors the choice of u_{0}, v_{0} to correspond to the illuminant is satisfactory.
Note 2 :
If the angle subtended at the eye by the pairs of object colors being compared is more than 1° and less than or equal to 4°, the tristimulus values $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ calculated with respect to the CIE 1931 standard colorimetric observer should be used for the calculation of U^{*}, V^{*}, and W^{*}. If this angular subtense is greater than 4°, the tristimulus values $\mathrm{X}_{10}, \mathrm{Y}_{10}, \mathrm{Z}_{10}$ calculated with respect to the CIE 1964 supplementary standard colorimetric observer should be used for the calculation of $\mathrm{U}_{10}^{*}, \mathrm{~V}_{10}^{*}$ and W_{10}^{*}.

Note 3:
This system was chosen from among others of about equal menit to promote uniformity of practice.

3.3 CIE 1964 color-difference formula

It is recommended that the measure $\Delta \mathrm{E}$ of the perceptual size of the difference between color $\left(\mathrm{U}_{1}^{*}, \mathrm{~V}_{1}^{*}, \mathrm{~W}_{1}^{*}\right)$ and color $\left(U_{2}^{*}, V_{2}^{*}, W_{2}^{*}\right)$ be calculated by means of the following formula

$$
\Delta E_{C 1 E}=\left[\left(U_{1}^{*}-U_{2}^{*}\right)^{2}+\left(V_{1}^{*}-V_{2}^{*}\right)^{2}+\left(W_{1}^{*}-W_{2}^{*}\right)^{2}\right]^{1 / 2},
$$

defining the distance in the CIE 1964 uniform color space between colors $\left(U_{1}^{*}, V_{1}^{*}, W_{1}^{*}\right)$ and $\left(U_{2}^{*}, V_{2}^{*}, W_{2}^{*}\right)$.
Note:
This measure $\Delta \mathrm{E}_{\text {CIE }}$ is intended to apply to comparisons of differences between object colors of the same size and shape viewed in identical white to middle-gray surroundings by an observer photopically adapted to a field of chromaticity not too different from that of average daylight.

4. RECOMMENDATIONS CONCERNING MISCELLANEOUS COLORIMETRIC PRACTICES AND FORMULAE

4.1 Calculation of tristimulus values 6 :)

The CIE tristimulus values of a color stimulus may be obtained by multiplying the color stimulus function $\varphi(\lambda)$ by the CIE spectral tristimulus values and integrating these products over the whole spectrum:

$$
\begin{array}{cc}
X=k \int_{\lambda} \varphi(\lambda) \bar{x}(\lambda) d \lambda & X_{10}^{128}=\mathrm{K}_{10} \int_{\lambda} \varphi(\lambda) \bar{x}_{10}(\lambda) d \lambda \\
Y=k \int_{\lambda} \varphi(\lambda) \bar{y}(\lambda) d \lambda & Y_{10}=k_{10} \int_{\lambda} \varphi(\lambda) \bar{y}_{10}(\lambda) d \lambda \\
Z=k \int_{\lambda} \varphi(\lambda) \bar{z}(\lambda) d \lambda & Z_{10}=k_{10} \int_{\lambda} \varphi(\lambda) \bar{z}_{10}(\lambda) d \lambda
\end{array}
$$

The symbols $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ refer to tristimulus values in the CIE 1931 standard colorimetric system, the symbols X_{10}, $\mathrm{Y}_{10}, \mathrm{Z}_{10}$ to tristimulus values in the CIE 1964 supplementary standard colorimetric system. Similarly, $\overline{\mathrm{x}}(\lambda), \overline{\mathrm{y}}(\lambda)$, $\bar{z}(\lambda)$ are the spectral tristimulus values defining the CIE 1931 standard colorimetric observer, and $\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda)$, $\bar{z}_{10}(\lambda)$ are the spectral tristimulus values defining the CIE 1964 supplementary standard colorimetric observer. The constants k and k_{10} are normalizing factors defined as

Note 1 :
For object colors the color stimulus function $\varphi(\lambda)$ is the product of the spectral reflectance $\rho(\lambda)$, or the spectral radiance factor $\beta(\lambda)$, or the spectral transmittance $r(\lambda)$ of the object and the relative spectral power distribution $S(\lambda)$ of the illuminant irradiating the object; thus either

$$
\begin{array}{ll}
& \varphi(\lambda)=\rho(\lambda) S(\lambda), \\
\text { or } & \varphi(\lambda)=\beta(\lambda) S(\lambda), \\
\text { or } & \varphi(\lambda)=\tau(\lambda) S(\lambda) .
\end{array}
$$

For illuminants the color stimulus function $\varphi(\lambda)$ is simply the relative spectral power distribution of the illuminant; thus $\varphi(\lambda)=S(\lambda)$.
It is recommended that whenever possible, for calculating the tristimulus values of object colors the illuminant be one of the standard illuminants (Section 1.1).

Note 2:
With k as defined above, Y becomes the luminous reflectance of the object when $\varphi(\lambda)=\rho(\lambda) \mathrm{S}(\lambda)$, the luminance factor when $\varphi(\lambda)=\beta(\lambda) S(\lambda)$, and the luminous transmittance when $\varphi(\lambda)=\tau(\lambda) S(\lambda)$, in each case expressed as a percentage. The calculated value of Y_{10} has no significance with regard to standard photometric quantities. To calculate the luminous reflectance (or luminance factor, or luminous transmittance) the function $\bar{y}(\lambda)$, which is identical to $V(\lambda)$, must be used.

Note 3:
The calculation of the luminance L of a color stimulus requires that the color stimulus function $\varphi(\lambda)$ be the spectral concentration of radiance $L_{e \lambda}$. The constant factor k is then set equal to K_{m}, the maximum luminous efficacy, which is equal approximately to 680 lumens per watt. ${ }^{6 b}$) Thus

$$
\left.L=K_{m} \int_{\lambda} L_{e \lambda} \bar{y} \lambda\right) d \lambda \quad\left(c d \cdot m^{-2} \text { or } l m \cdot s r^{-1} \cdot m^{-2}\right)
$$

Note 4:
In all practical calculations of tristimulus values the integration is approximated by a summation. Thus, for example,

$$
\begin{aligned}
& X=k \sum_{\lambda}^{\sum \varphi(\lambda) \bar{x}(\lambda) \Delta \lambda} \\
& Y=k \sum_{\lambda}^{\sum} \varphi(\lambda) \bar{y}(\lambda) \Delta \lambda \\
& Z=\sum_{\lambda}^{\sum} \varphi(\lambda) \bar{z}(\lambda) \Delta \lambda \\
& k=\underset{\lambda}{100 / \Sigma S(\lambda) \bar{y}(\lambda) \Delta \lambda .}
\end{aligned}
$$

with

129

The wavelength interval $\Delta \lambda$ is either 1,5 , or 10 nm and the spectral tristimulus values $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$ are those defined in Table 2.1 or Table 2.3.1. Similar formulae are used for the calculation of $\mathrm{X}_{10}, \mathrm{Y}_{10}, \mathrm{Z}_{10}$, in which case the spectral tristimulus values $\bar{x}_{10}(\lambda), \bar{y}_{10}(),. \bar{z}_{10}(\lambda)$ of Table 2.2 or Table 2.3.2 are used.

4.2 Calculation of chromaticity coordinates ${ }^{2}$)

The chromaticity coordinates (x, y, z) are derived from the tristimulus values (X, Y, Z) as follows:

$$
\begin{aligned}
& X=\frac{X}{X+Y+Z} \\
& y=\frac{Y}{X+Y+Z} \\
& Z=\frac{Z}{X+Y+Z} .
\end{aligned}
$$

Because of the relation $x+y+z=1$ it suffices to use x, y only.
Note:
The chromaticity coordinates $\mathrm{x}_{10}, \mathrm{y}_{10}, \mathrm{z}_{10}$ are computed similarly from the tristimulus values $\mathrm{X}_{10}, \mathrm{Y}_{10}, \mathrm{Z}_{10}$.

4.3 Equations representing relationships between color stimuli ${ }^{7}$)

When equations are used to represent relationships between color stimuli, symbois of vector notation should be used instead of those for numerical relationships. For these equations one of the following forms should be used:

$$
\begin{array}{ll}
(C) & \equiv X(X)+Y(Y)+Z(Z) \\
\mathbb{G} & =X X+Y(X Z \\
C & =X X+Y Y+Z Z
\end{array}
$$

where $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ are the tristimulus values of color stimulus (C) or \mathbf{C}. The unit vectors of the reference stimuli are indicated either by (X), (Y), (Z), in which case the sign ${ }^{\prime}$ ', pronounced 'matches', should be used, or by the Gothic capital letters $\boldsymbol{X}, \boldsymbol{\eta}, \mathbf{3}$, or by the boldface Roman letters $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$, in the two latter cases the sign $=$ ', pronounced 'equals', should be used.

4.4 Excitation and colorimetric purity ${ }^{8}$)

It is recommended that excitation purity of a given color stimulus be represented by the symbol Pe_{e}, and be calculated by the one of the formulae

$$
p_{e}=\left(y-y_{w}\right) /\left(y_{d}-y_{w}\right) \text {, or } p_{e}=\left(x-x_{w}\right) /\left(x_{d}-x_{w}\right),
$$

for which the numerator has the greater arithmetic value.
It is recommended that colorimetric purity for a given stimulus be represented by the symbol pc and be calculated by the formula:

$$
p_{c}=p_{e} y_{d} / y
$$

In these expressions x, y are the chromaticity coordinates of the given stimulus with respect to the CIE 1931 standard colorimetric system; x_{w}, y_{w} are the coordinates of the achromatic stimulus, which is conventionally
taken to have zero purity. For stimuli referring to self-luminous objects, $\mathrm{x}_{\mathrm{w}}, \mathrm{y}_{w}$ are the coordinates of the equi-energy stimulus (see Section 2.1, Note 5; Section 2.3, Note 2). For stimuli referring to object colors, x_{w}, y_{w} are the coordinates of the light used to illuminate the object. The chromaticity coordinates $\mathrm{x}_{\mathrm{d}}, \mathrm{y}_{\mathrm{d}}$ specify in the chromaticity diagram the point on the spectrum locus, or on the boundary joining its extremes (purple line), representing the stimulus required to be mixed with the achromatic stimulus to match the stimulus considered.

Note:

Similar formulae are used when excitation purity and colorimetric purity are calculated with respect to the CIE 1964 supplementary standard colorimetric system.

4.5 Determination of chromaticity coordinates of fluorescent lamps9)

It is recommended that international comparisons of chromaticity coordinates (x, y) of fluorescent lamps shall be based upon measurements of spectral power distributions reduced by computation in accordance with recommendations 4.1 and 4.2.

Note 1:

By current practice this method is applied chiefly to fluorescent lamps used as standards. Individual lamps in any international comparison may, if desired, be evaluated in terms of standards of the same spectral type by means of either physical or visual colorimeters. If physical colorimeters are used, they should be carefully adjusted to the CIE 1931 standard colorimetric observer by spectrum templates or by filters. Visual colorimeters with more than three matching stimuli should be preferred to those having only three matching stimuli.

131

EXPLANATORY COMMENTS ON THE OFFICIAL RECOMMENDATIONS

I(a) This recommendation deviates from the original regarding ' CIE standard sources $\mathrm{A}, \mathrm{B}, \mathrm{C}$ ' (CIE Proc. 8th Session, Cambridge 1931 ; p. 19, resolution 2. Revision in CIE Proc. 12th Session, Stockholm 1951; Vol. 3, p. 63,7-colorimetry, recommendation 1). A distinction is made between 'illuminant' and 'source'. The term 'source' refers to a physical emitter of light, such as a lamp or the sun and sky. The term 'illuminant' refers to a specific spectral power distribution, not necessarily provided directly by a source, and not necessarily realizable by a source. The present recommendation first defines 'standard illuminants' by relative spectral power distributions and then 'standard sources'. The definition of the standard sources is considered secondary as it is conceivable that new developments in lamps and filters will bring about improved standard sources that represent the standard illuminants more accurately and are more suitable for laboratory use. Presently no recommendation has been made for a standard source representing standard illuminant D_{65}. The original recommendations regarding standard illuminant D_{65} (originally called D_{6500}) and other standard illuminants D representing daylight of different correlated color temperatures are given in CIE Proc. 15th Session, Vienna 1963; Vol. A, p. 35, recommendations 2 and 3, and in CIE Proc. 16th Session, Washington 1967, Compte Rendu d'Activité du Comité d'Experts E-1.3.1 (colorimetry).

In 1968 the Comité International des Poids et Mesures modified the 'International Practical Temperature Scale, 1948 (amended 1960)' and the value of the radiation constant c_{2} was set equal to $1.4388 \cdot 1 \sigma^{2} \mathrm{~m} \cdot \mathrm{~K}$. The modification affects the color temperature or correlated color temperature of the CIE illuminants and sources and the appropriate changes have been made in this document.
(b) The relative spectral power distribution of illuminant A has been calculated in accordance with Planck's radiation law which gives the spectral concentration of radiant exitance of a full radiator as a function of wavelength and temperature:

$$
M_{c, \lambda}(\lambda, T)=c_{1} \lambda^{-5}\left(e^{c_{2} / \lambda T}-1\right)^{-1} W \cdot m^{-3}
$$

where the radiation constants are taken as

$$
\begin{aligned}
& c_{1}=3.74150 \cdot 1 \sigma^{16} \mathrm{~W} \cdot \mathrm{~m}^{2} \\
& \mathrm{c}_{2}=1.4388 \cdot 1 \sigma^{2} \mathrm{~m} \cdot \mathrm{~K}, \text { and }
\end{aligned}
$$

the temperature T is set equal to

$$
T=\frac{1.4388}{1.4350} 2848 \mathrm{~K} \cong 2856 \mathrm{~K}
$$

The choice of this temperature assures a spectral power distribution that is identical to the one adopted in 1931 for illuminant A when c_{2} was equal to $1.4350 \cdot 1 \sigma^{2} \mathrm{~m} \cdot \mathrm{~K}$ and T was set equal to 2848 K in accordance with the 'International Practical Temperature Scale, 1927'.

The calculated values of $M_{e, \lambda}$ have been normalized by computing $S(\lambda)=100 M_{e, \lambda} / M_{e, 560}$; that is $S(\lambda)=$ 100.00 for $\lambda=560 \cdot 10^{9} \mathrm{~m}=560 \mathrm{~nm}$. Thus the numerical value of c_{1} is of no importance in the calculations. The relative spectral power distribution $S(\lambda)$ is given in Table 1.1 .5 from 300 to 830 nm at 1 nm intervals and with six significant figures. In Table 1.1.1 these values are given at 5 nm intervals and rounded-off to two decimals.

The values of $\mathrm{S}(\lambda)$ for illuminant A given in Table 1.1.1 show, in several instances, small and insignificant discrepancies of one unit in the last decimal from corresponding values commonly used in various publications. The values given in Table 1.1.1 are adopted here as the correctly rounded-off values.
(c) The correlated color temperature of an illuminant is defined by the temperature corresponding to the point on the Planckian locus which is nearest to the point representing the chromaticity of the illuminant in the CIE 1960 UCS diagram when based on the data of the CIE 1931 standard colorimetric observer (see Section 3.1). The correlated color temperatures given in this document for illuminants B, C, and D_{65} have been determined by commonly used graphical and numerical methods.

The correlated color temperatures are affected by the numerical value of the radiation constant c_{2}. In accordance with the 'International Practical Temperature Scale, 1948, amended 1960' the value of c_{2} was equal to $1.4380 \cdot 1 \sigma^{2} \mathrm{~m} \cdot \mathrm{~K}$. With this value the correlated color temperatures of illuminants B, C, and D_{65} are approximately equal to $4871 \mathrm{~K}, 6770 \mathrm{~K}$, and 6500 K , respectively. The change of c_{2} to the value of 1.4388-1 $\sigma^{2} \mathrm{~m} \cdot \mathrm{~K}$ ('International Practical Temperature Scale, 1968') increases the correlated color temperatures of illuminants B, C, and D_{65} each by the factor $1.4388 / 1.4380$. Thus the correlated color temperatures of these illuminants increase by approximately $3 \mathrm{~K}, 4 \mathrm{~K}$, and 4 K , respectively.
(d) Illuminants B and C do not adequately represent, as originally intended, common phases of daylight. It is anticipated that at some future date, that is yet to be decided, illuminants B and C will be dropped from the list of recommended standard illuminants.
(e) The coefficients of the formulae for x_{D} have been changed slightly to account for the change of c_{2} from $1.4380 \cdot 1 \sigma^{2} \mathrm{~m} \cdot \mathrm{~K}$ to $1.4388 \cdot 1 \sigma^{2} \mathrm{~m} \cdot \mathrm{~K}$. The original coefficients (see CIE Proc. 16th Session, Washington 1967, Compte Rendu d'Activité du Comité d'Experts E-1.3.1 (colorimetry) have been multiplied by (1.4388/1.4380)n where n is equal to the exponent of T_{c} associated with the coefficient.
(f) The precision of the calculated values $x_{D}, y_{D}, M_{1}, M_{2}$, and $S(\lambda)$ is affected by the number of significant figures carried through the various stages of calculation. Thus rounded-off values from one set of calculations to another may differ occasionally by one unit in the last digit.
2. This recommendation supersedes the original given in CIE Proc. 8th Session, Cambridge 1931, p. 23, resolution 3a, and is in accordance with agreements reached in 1959 and 1967 (CIE Proc. 14th Session, Brussels 1959, Vol. A, p. 36, recommendation 2; Meeting of E-1.3.I on June 15, 1967 in Washington).
3. This recommendation has been changed from the original given in CIE Proc. 8th Session, Cambridge 1931, p. 23, resolution 3, and is in accordance with an agreement reached at the joint meeting of E-1.3.1, E-1.3.2 and E-1. 2 on June 28, 1967 in Washington.
4. These recommendations are based on the originals given in: CIE Proc. 8th Session. Cambridge 1931, p. 19, resolution 1; p. 23, resolution 4; p. 24, resolution 5. CIE Proc. 14th Session, Brussels 1959, Vol. A, p. 36, recommendation 3. CIE Proc. 15th Session, Vienna 1963, Vol. A, p. 35, recommendation 1.

The recommendations given in this document regarding the CIE 1931 standard colorimetric observer data deviate from the originals in several ways. The CIE 1931 standard colorimetric observer is now defined by the spectral tristimulus values (color-matching functions) $x(\lambda), y(\lambda), z(\lambda)$ from 360 to 830 nm at 1 nm intervals. From these data an abridged table is derived for the spectral range 380 to 780 nm at 5 nm intervais. The abridged data agree very closely with the original definition of the $x(\lambda), y(\lambda), z(\lambda)$ functions given in 1931. The new data have been smoothed slightly and the few and minor deviations (see Section 2.3, Note 1) from the original data are caused by the smoothing.
The spectral tristimulus values $\bar{x}(\lambda), \bar{y}(\lambda), \vec{z}(\lambda)$ were orginally derived from spectral tristimulus values $\bar{r}(\lambda)$, $\overline{\mathrm{g}}(\lambda), \overline{\mathrm{b}}(\lambda)$ referring to spectral matching stimuli $(\mathrm{R}),(\mathrm{G}),(B)$. These matching stimuli are specified as stimuli of wavelengths $700.0,546.1$, and 435.8 nm , respectively. Their units are so chosen as to make a mixture of equal quantities of the three spectral stimuli match the equienergy stimulus, which is defined as a stimulus whose total radiant power at all wavelengths between any two limiting wavelengths within the visible spectrum is a constant multiple of the difference between these limiting wavelengths. The luminances of the units of the three spectral stimuli are in the ratios $1.0000: 4.5907: 0.0601$; their radiances are in the ratios $72.0962: 1.3791: 1.0000$.
The spectral tristimulus values $\bar{r}(\lambda), \bar{g}(\lambda), \bar{b}(\lambda)$ and corresponding chromaticity coordinates $r(\lambda), g(\lambda), b(\lambda)$ based on the above matching stimuli are given in Table 2.4.

The derivation of the (X), (Y), (Z) system from the (R), (G), (B) system was based on a number of relations which may be specified as follows:

Stimulus	(R), (G), (B) System (Chromaticity Coordinates)			(X), (Y), (Z) System (Chromaticity Coordinates)		
	r	g	b	x	y	2
(R) 700.0 nm	1	0	0	0.73469	0.26531	0.00000
(G) 546.1 nm	0	1	0	0.27368	0.71743	0.00890
(B) 435.8 nm	0	0	1	0.16654	0.00888	0.82458
Source B	0.36230	0.34305	0.29465	0.34842	0.35161	0.29997

The relationship between the chromaticity coordinates $r(\lambda), g(\lambda), b(\lambda)$ and $x(\lambda), y(\lambda), z(\lambda)$ of a given spectral stimulus of wavelength λ are expressed by the following projective transformation:

$$
\begin{aligned}
& x(\lambda)=\frac{0.49000 r(\lambda)+0.31000 g(\lambda)+0.20000 b(\lambda)}{0.66697 r(\lambda)+1.13240 g(\lambda)+1.20063 b(\lambda)} \\
& y(\lambda)=\frac{0.17697 r(\lambda)+0.81240 g(\lambda)+0.01063 b(\lambda)}{0.66697 r(\lambda)+1.13240 g(\lambda)+1.20063 b(\lambda)} \\
& z(\lambda)=\frac{0.00000 r(\lambda)+0.01000 g(\lambda)+0.99000 b(\lambda)}{0.66697 r(\lambda)+1.13240 g(\lambda)+1.20063 b(\lambda)}
\end{aligned}
$$

The chromaticity coordinates $x(\lambda), y(\lambda), z(\lambda)$ are converted to the spectral tristimulus values $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$ as follows:

$$
\bar{x}(\lambda)=\frac{x(\lambda)}{y(\lambda)} V(\lambda), \bar{y}(\lambda)=V(\lambda), \bar{z}(\lambda)=\frac{z(\lambda)}{y(\lambda)} V(\lambda)
$$

where $V(\lambda)$ is the photopic luminous efficiency function.
The spectral tristimulus values $\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda), \bar{z}_{10}(\lambda)$ defining the CIE 1964 supplementary standard colorimetric observer given in Table 2.2 and abridged in Table 2.3.2, were derived from spectral tristimulus values referring to matching stimuli $\left(\mathrm{R}_{10}\right),\left(\mathrm{G}_{10}\right),\left(\mathrm{B}_{10}\right)$. These are stimuli specified in terms of wavenumbers (\bar{v}) 15500,19000 , and $22500 \mathrm{~cm}^{-1}$ (corresponding approximately to wavelength 645.2 , 526.3 , and 444.4 nm), and their amounts are given in power units.

The spectral tristimulus values based on the above stimuli are given in Table 2.5 from wavenumbers 27750 to $12250 \mathrm{~cm}^{-1}$ at intervals of $250 \mathrm{~cm}^{-1}$. Also given are the corresponding chromaticity coordinates for the specified spectral stimuli.
The derivation of the $\left(\mathrm{X}_{10}\right),\left(\mathrm{Y}_{10}\right),\left(\mathrm{Z}_{10}\right)$ system from the $\left(\mathrm{R}_{10}\right),\left(\mathrm{C}_{10}\right),\left(\mathrm{B}_{10}\right)$ system is based on principles which lead to a coordinate system similar to that of the coordinate system associated with the CIE 1931 standard colorimetric observer. The following transformation equations relate very closely the $\bar{r}_{10}(\bar{\nu}), g_{10}(\bar{\nu})$, $\overline{\mathrm{b}}_{10}(\bar{\nu})$ values of Table 2.5 to $\overline{\mathrm{x}}_{10}(\bar{\nu}), \overline{\mathrm{y}}_{10}(\bar{\nu}), \overline{\mathrm{z}}_{10}(\bar{\nu})$ values:

$$
\begin{aligned}
& \overline{\mathrm{x}}_{10}(\bar{\nu})=0.341080 \overline{\mathrm{r}}_{10}(\bar{\nu})+0.189145 \overline{\mathrm{~g}}_{10}(\bar{\nu})+0.387529 \overline{\mathrm{~b}}_{10}(\bar{\nu}) \\
& \overline{\mathrm{y}}_{10}(\bar{\nu})=0.139058 \overline{\mathrm{r}}_{10}(\bar{\nu})+0.837460 \overline{\mathrm{~g}}_{10}(\bar{\nu})+0.073316 \overline{\mathrm{~b}}_{10}(\bar{\nu}) \\
& \overline{\mathrm{z}}_{10}(\bar{\nu})=0.000000 \overline{\mathrm{r}}_{10}(\bar{\nu})+0.039553 \overline{\mathrm{~g}}_{10}(\bar{\nu})+2.026200 \overline{\mathrm{~b}}_{10}(\bar{\nu})
\end{aligned}
$$

Chromaticity coordinates $x_{10}(\bar{\nu}), y_{10}(\bar{\nu}), z_{10}(\bar{\nu})$ were then computed from

$$
\begin{aligned}
& x_{10}(\bar{\nu})=\frac{\bar{x}_{10}(\bar{\nu})}{\bar{x}_{10}(\bar{\nu})+\bar{y}_{10}(\bar{\nu})+\bar{z}_{10}(\bar{\nu})} \\
& y_{10}(\bar{\nu})=\frac{\bar{y}_{10}(\bar{\nu})}{\bar{x}_{10}(\bar{\nu})+\bar{y}_{10}(\bar{\nu})+\bar{z}_{10}(\bar{\nu})} \\
& z_{10}(\bar{\nu})=\frac{\bar{z}_{10}(\bar{\nu})}{\bar{x}_{10}(\bar{\nu})+\bar{y}_{10}(\bar{\nu})+\bar{z}_{10}(\bar{\nu})}
\end{aligned}
$$

The Table 2.2 contains the spectral tristimulus values $\overline{\mathrm{x}}_{10}(\lambda), \overline{\mathrm{y}}_{10}(\lambda), \overline{\mathrm{z}}_{10}(\lambda)$ and chromaticity coordinates $\mathrm{x}_{10}(\lambda), \mathrm{y}_{10}(\lambda), \mathrm{z}_{10}(\lambda)$ on a wavelength basis obtained by interpolation and extrapolation of the functions $\overline{\mathrm{x}}_{10}(\overline{\mathrm{~V}}), \overline{\mathrm{y}}_{10}(\overline{\mathrm{v}}), \bar{z}_{10}(\overline{\bar{v}})$, and $\mathrm{x}_{10}(\overline{\mathrm{v}}), \mathrm{y}_{10}(\overline{\mathrm{v}}), \mathrm{z}_{10}(\overline{\mathrm{D}})$.

The above transformation equations deviate somewhat from those published in the CIE Proc. 14th Session, Brussels 1959, Vol. A, p. 93 which related unsmoothed values of $\overline{\mathrm{r}}_{10}(\bar{\nu}), \overline{\mathrm{g}}_{10}(\bar{\nu}), \overline{\mathrm{b}}_{10}(\overline{\bar{\nu}})$ with unsmoothed values of $\bar{x}_{10}(\bar{\nu}), \bar{y}_{10}(\bar{\nu}), \bar{z}_{10}(\bar{\nu})$.

5(a) These recommendations are essentially as given in CIE Proc. 14th Session, Brussels 1959, Vol. A. p. 36, recommendation 4; and CIE Proc. 15th Session, Vienna 1963, Vol. A, p. 3, recommendation 4.

The CIE colorimetry committee recognizes the importance of color-difference calculations to industrial color-control problems and the desire to make use of a color-difference formula that applies accurately to visual comparisons of differences between object colors under visual observing conditions. None of the existing color-difference formulae, including the one recommended by the CIE, is entirely satisfactory and more experimental work is required to arrive at an accurate method of calculating color-differences.

In June 1967 the CIE colorimetry committee recommended to the National Committees of the CIE a detailed working program for pursuing the problem of color-difference calculations. Details of this program have been published in J. Opt. Soc. Am. S8, 290 (1968).
(b) Tables 2.3 .3 and 2.3 .4 supersede those computed by I. Nimeroff, J. Opt. Soc. Am. 54, 1365 (1964).

6(a) This recommendation is new but in accordance with general practice of colorimetric calculations.
(b) Report on the Principles of Light Measurements. Publication CIE No. 18 (E-1.2), 1970.
7. This recommendation is based on the original given in CIE Proc. 13th Session, Zurich, 1955, Vol. I. Section 1.3.1, p. II, recommendation 6, amended in CIE Bulletin No. 3, May 1957, p. 8, 16, 24. The use of boldface Roman letters as symbols for vector notations is another alternative which is now added.
8. This recommendation is essentially that given originally in CIE Proc. Il th Session, Paris 1948, p. 16, recommendation 2.
9. This recommendation is essentially the same as the original given in CIE Proc. 14th Session, Brussels 1959, Vol. A. p. 36 recommendation 1. Note 2 of the original recommendation has been omitted.

headings of tables

Table 1.1.1: Relative spectral power distributions of standard illuminants A, B, C, and $D_{6 s}$ from 300 to 830 nm at 5 nm intervals.

Table 1.1.2: Components $S_{0}(\lambda), S_{1}(\lambda), S_{2}(\lambda)$, of daylight used in the calculation of relative spectral power distributions of daylight of different correlated color temperatures.

Table 1.1.3: Chromaticity coordinates X_{D}, Y_{D} and factors M_{1}, M_{2} used in the calculation of the relative spectral power distribution of daylight for correlated color temperatures T_{c} in the range 4000 to 25000 K . The corresponding chromaticity coordinates u_{D}, v_{D} are also given.

Table 1.1.4: Relative spectral power distributions of daylight D_{55} and D_{75} calculated in accordance with the standardized method of calculation.

Table 1.1.5: Relative spectral power distributions of standard illuminants A and D_{6} from 300 to 830 nm at I nm intervals.

Table 1.1.6: Chromaticity coordinates x, y and u, v of standard illuminants A, B, C, D_{55}, D_{65} and D_{75} computed for the 1931 and 1964 standard colorimetric observers.

Table 2.1: CIE 1931 standard colorimetric observer.
Spectral tristimulus values $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$, and corresponding chromaticity coordinates $x(\lambda), y(\lambda)$, $z(\lambda)$ for $\lambda=360$ to 830 nm at 1 nm intervals.

Table 2.2: CIE 1964 supplementary standard colorimetric observer. Spectral tristimulus values $\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda)$,
$\bar{z}_{10}(\lambda)$ and corresponding chromaticity coordinates $x_{10}(\lambda), y_{10}(\lambda), z_{10}(\lambda)$ for $\lambda=360$ to 830 nm at 1 nm intervals.

Table 2.3.1: CIE 1931 standard colorimetric observer. Abridged set of spectral tristimulus values $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$ and corresponding chromaticity coordinates $x(\lambda), y(\lambda), z(\lambda)$ for $\lambda=380$ to 780 nm at 5 nm intervals. (For 10 nm intervals, omit alternate values).

Table 2.3.2: CIE 1964 supplementary standard colorimetric observer. Abridged set of spectral tristimulus values $\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda), \bar{z}_{10}(\lambda)$ and corresponding chromaticity coordinates $x_{10}(\lambda), y_{10}(\lambda), z_{10}(\lambda)$ for $\lambda=$ 380 to 780 nm at 5 nm intervals. (For 10 nm intervals, omit alternate values.)

Table 2.3.3: Spectral tristimulus values $\bar{u}(\lambda), \bar{v}(\lambda), \bar{w}(\lambda)$ and corresponding chromaticity coordinates $u(\lambda), v(\lambda)$, $w(\lambda)$ for $\lambda=380$ to 780 nm at 5 nm intervals. These data are derived from the spectral tristimulus values $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$ of the CIE 1931 standard colorimetric observer (Table 2.1) in accordance with transformations given in Note 4 of recommendation 3.1.

Table 2.3.4: Spectral tristimulus values $\bar{u}_{10}(\lambda), \bar{v}_{10}(\lambda), \bar{w}_{10}(\lambda)$ and corresponding chromaticity coordinates $u_{10}(\lambda), v_{10}(\lambda), w_{10}(\lambda)$ for $\lambda=380$ to 780 nm at 5 nm intervals. These data are derived from the spectral tristimulus values $\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda), \bar{z}_{10}(\lambda)$ of the CIE 1964 supplementary standard colorimetric observer (Table 2.2) in accordance with transformations given in Note 4 of recommendation 3.1.

Table 2.4: CIE 1931 standard colorimetric observer. Spectral tristimulus values $\overline{\mathrm{r}}(\lambda), \overline{\mathrm{g}}(\lambda), \overline{\mathrm{b}}(\lambda)$ and corresponding chromaticity coordinates $\mathrm{r}(\lambda), \mathrm{g}(\lambda), \mathrm{b}(\lambda)$ for $\lambda=380$ to 780 nm at 5 nm intervals.

Table 2.5: CIE 1964 supplementary standard colorimetric observer. Spectral tristimulus values $\bar{r}_{1} \circ(\bar{D})$, $\bar{g}_{10}(\bar{\nu}), \bar{b}_{10}(\bar{\nu})$ and corresponding chromaticity coordinates $\overline{1}_{10}(\bar{\nu}), \bar{g}_{10}(\bar{\nu}), \bar{b}_{10}(\bar{\nu})$ for wavenumbers $\overline{\boldsymbol{v}}=27750$ to $12250 \mathrm{~cm}^{-1}$ at $250 \mathrm{~cm}^{-1}$ intervals.

136

TABLE 1.1.1.

$\begin{gathered} \lambda \\ (\mathrm{nm}) \end{gathered}$	$\begin{aligned} & (A) \\ & S(\lambda) \end{aligned}$	(B) $S(\lambda)$	(C) $S(\lambda)$	$\begin{aligned} & \left(\mathrm{D}_{65}\right) \\ & \mathrm{S}(\mathrm{~A}) \end{aligned}$	$\begin{aligned} & \lambda \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & (A) \\ & S(\lambda) \end{aligned}$	(B) $S(\lambda)$	(C) $S(\lambda)$	$\left.\begin{array}{l} \left(\mathrm{D}_{65}\right. \\ \mathrm{S}(\lambda) \end{array}\right\}$
300	0.93			0.03	575	110.80	101.90	100.15	96.1
05	1.13			1.7	80	114.44	101.00	97.80	95.8
10	1.36			3.3	85	118.08	100.07	95.43	92.2
15	1.62			11.8	90	121.73	99.20	93.20	88.7
20	1.93	0.02	0.01	20.2	95	125.39	98.44	91.22	89.3
325	2.27	0.26	0.20	28.6	600	129.04	98.00	89.70	90.0
30	2.66	0.50	0.40	37.1	05	132.70	98.08	88.83	89.8
35	3.10	1.45	1.55	38.5	10	136.35	98.50	88.40	89.6
40	3.59	2.40	2.70	39.9	15	139.99	99.06	88.19	88.6
45	4.14	4.00	4.85	42.4	20	143.62	99.70	88.10	87.7
350	4.74	5.60	7.00	44.9	625	147.24	100.36	88.06	85.5
55	5.41	7.60	9.95	45.8	30	150.84	101.00	88.00	83.3
60	6.14	9.60	12.90	46.6	35	154.42	101.56	87.86	83.5
65	6.95	12.40	17.20	49.4	40	157.98	102.20	87.80	83.7
70	7.82	15.20	21.40	52.1	45	161.52	103.05	87.99	81.9
375	8.77	18.80	27.50	51.0	650	165.03	103.90	88.20	80.0
80	9.80	22.40	33.00	50.0	55	168.51	104.59	88.20	80.1
85	10.90	26.85	39.92	52.3	60	171.96	105.00	87.90	80.2
90	12.09	31.30	47.40	54.6	65	175.38	105.08	87.22	81.2
95	13.35	36.18	55.17	68.7	70	178.77	104.90	86.30	82.3
400	14.71	41.30	63.30	82.8	675	182.12	104.55	85.30	80.3
05	16.15	46.62	71.81	87.1	80	185.43	103.90	84.00	78.3
10	17.68	52.10	80.60	91.5	85	188.70	102.84	82.21	74.0
15	19.29	57.70	89.53	92.5	90	191.93	101.60	80.20	69.7
20	20.99	63.20	98.10	93.4	95	195.12	100.38	78.24	70.7
425	22.79	68.37	105.80	90.1	700	198.26	99.10	76.30	71.6
30	24.67	73.10	112.40	86.7	05	201.36	97.70	74.36	73.0
35	26.64	77.31	117.75	95.8	10	204.41	96.20	72.40	74.3
40	28.70	80.80	121.50	104.9	15	207.41	94.60	70.40	68.0
45	30.85	83.44	123.45	110.9	20	210.36	92.90	68.30	61.6
450	33.09	85.40	124.00	117.0	725	213.27	91.10	66.30	65.7
55	35.41	86.88	123.60	117.4	30	216.12	89.40	64.40	69.9
60	37.81	88.30	123.10	117.8	35	218.92	88.00	62.80	72.5
65	40.30	90.08	123.30	116.3	40	221.67	86.90	61.50	75.1
70	42.87	92.00	123.80	114.9	45	224.36	85.90	60.20	69.3
475	45.52	93.75	124.09	115.4	750	227.00	85.20	59.20	63.6
80	48.24	95.20	123.90	115.9	55	229.59	84.80	58.50	55.0
85	51.04	96.23	122.92	112.4	60	232.12	84.70	58.10	46.4
90	53.91	96.50	120.70	108.8	65	234.59	84.90	58.00	56.6
95	56.85	95.71	116.90	109.1	70	237.01	85.40	58.20	66.8
500	59.86	94.20	112.10	109.4	775	239.37			65.1
05	62.93	92.37	106.98	108.6	80	241.68			63.4
10	66.06	90.70	102.30	107.8	85	243.92			63.8
15	69.25	89.65	98.81	106.3	90	246.12			64.3
20	72.50	89.50	96.90	104.8	95	248.25			61.9
525	75.79	90.43	96.78	106.2	800	250.33			59.5
30	79.13	92.20	98.00	107.7	05	252.35			55.7
35	82.52	94.46	99.94	106.0	10	254.31			52.0
40	85.95	96.90	102.10	104.4	15	256.22			54.7
45	89.41	99.16	103.95	104.2	20	258.07			57.4
550	92.91	101.00	105.20	104.0	825	259.86			58.9
55	96.44	102.20	105.67	102.0	30	261.60			60.3
60	100.00	102.80	105.30	100.0					
65	103.58	102.92	104.11	98.2					
70	107.18	102.60	102.30	96.3					

137
TABLE 1.1.2

$\begin{aligned} & \lambda \\ & (n \mathrm{~m}) \end{aligned}$	$\mathrm{S}_{0}(\lambda)$	$S_{1}(\lambda)$	$S_{2}{ }^{\text {(})}$
300	0.04	0.02	0.0
310	6.0	4.5	2.0
320	29.6	22.4	4.0
330	55.3	42.0	8.5
340	57.3	40.6	7.8
350	61.8	41.6	6.7
360	61.5	38.0	5.3
370	68.8	42.4	6.1
380	63.4	38.5	3.0
390	65.8	35.0	1.2
400	94.8	43.4	- 1.1
410	104.8	46.3	- 0.5
420	105.9	43.9	- 0.7
430	96.8	37.1	- 1.2
440	113.9	36.7	- 2.6
450	125.6	35.9	- 2.9
460	125.5	32.6	- 2.8
470	121.3	27.9	- 2.6
480	121.3	24.3	- 2.6
490	113.5	20.1	- 1.8
500	113.1	16.2	
510	110.8	13.2	- 1.3
520	106.5	8.6	- 1.2
530	108.8	6.1	- 1.0
540	105.3	4.2	- 0.5
550	104.4	1.9	- 0.3
560	100.0	0.0	0.0
570	96.0	- 1.6	0.2
580	95.1	- 3.5	0.5
590	89.1	- 3.5	2.1
600	90.5	- 5.8	3.2
610	90.3	- 7.2	4.1
620	88.4	- 8.6	4.7
630	84.0	- 9.5	5.1
640	85.1	-10.9	6.7
650	81.9	-10.7	7.3
660	82.6	-12.0	8.6
670	84.9	-14.0	9.8
680	81.3	-13.6	10.2
690	71.9	-12.0	8.3
700	74.3	-13.3	9.6
710	76.4	-12.9	8.5
720	63.3	-10.6	7.0
730	71.7	-11.6	7.6
740	77.0	-12.2	8.0
750	65.2	-10.2	6.7
760	47.7	- 7.8	5.2
770	68.6	-11.2	7.4
780	65.0	-10.4	6.8
790	66.0	-10.6	7.0
800	61.0	-9.7	6.4
810	53.3	-8.3	5.5
820	58.9	- 9.3	6.1
830	61.9	- 9.8	6.5

138
TABLE 1.1.3

$\mathrm{T}_{\mathrm{c}}{ }^{1}$	${ }^{x_{D}}$	${ }^{\prime}{ }_{D}$	u_{D}	${ }^{\text {V }}$	M_{1}	M_{2}
4000	0.3823	0.3838	0.2236	0.3366	-1.505	2.827
4100	0.3779	0.3812	0.2217	0.3354	-1.464	2.460
4200	0.3737	0.3786	0.2200	0.3343	-1.422	2.127
4300	0.3697	0.3760	0.2183	0.3331	$\cdot 1.378$	1.825
4400	0.3658	0.3734	0.2168	0.3320	-1.333	1.550
4500	0.3621	0.3709	0.2153	0.3308	-1.286	1.302
4600	0.3585	0.3684	0.2139	0.3297	-1.238	1.076
4700	0.3551	0.3659	0.2126	0.3286	-1.190	0.871
4800	0.3519	0.3634	0.2114	0.3275	-1.140	0.686
4900	0.3487	0.3610	0.2102	0.3265	-1.090	0.518
5000	0.3457	0.3587	0.2091	0.3254	-1.040	0.367
5100	0.3429	0.3564	0.2081	0.3244	-0.989	0.230
5200	0.3401	0.3541	0.2071	0.3234	-0.939	0.106
5300	0.3375	0.3519	0.2062	0.3225	-0.888	-0.005
5400	0.3349	0.3497	0.2053	0.3215	-0.837	-0.105
5500	0.3325	0.3476	0.2044	0.3206	-0.786	-0.195
5600	0.3302	0.3455	0.2036	0.3196	-0.736	-0.276
5700	0.3279	0.3435	0.2028	0.3187	-0.685	-0.348
5800	0.3258	0.3416	0.2021	0.3179	-0.635	-0.412
5900	0.3237	0.3397	0.2014	0.3170	-0.586	-0.469
6000	0.3217	0.3378	0.2007	0.3162	-0.536	-0.519
6100	0.3198	0.3360	0.2001	0.3154	-0.487	-0.563
6200	0.3179	0.3342	0.1995	0.3146	-0.439	-0.602
6300	0.3161	0.3325	0.1989	0.3138	-0.391	-0.635
6400	0.3144	0.3308	0.1983	0.3130	-0.943	-0.664
6500	0.3128	0.3292	0.1978	0.3123	-0.296	-0.688
6600	0.3112	0.3276	0.1973	0.3116	-0.250	-0.709
6700	0.3097	0.3260	0.1968	0.3109	-0.204	-0.726
6800	0.3082	0.3245	0.1963	0.3102	-0.159	-0.739
6900	0.3067	0.3231	0.1959	0.3095	-0.114	-0.749
7000	0.3054	0.3216	0.1955	0.3088	-0.070	-0.757
7100	0.3040	0.3202	0.1950	0.3082	-0.026	-0.762
7200	0.3027	0.3189	0.1946	0.3076	0.017	-0.765
7300	0.3015	0.3176	0.1943	0.3069	0.060	-0.765
7400	0.3003	0.3163	0.1939	0.3063	0.102	-0.763
7500	0.2991	0.3150	0.1935	0.3057	0.144	-0.760
7600	0.2980	0.3138	0.1932	0.3052	0.184	0.755
7700	0.2969	0.3126	0.1928	0.3046	0.225	-0.748
7800	0.2958	0.3115	0.1925	0.3041	0.264	-0.740
7900	0.2948	0.3103	0.1922	0.3035	0.303	-0.730
8000	0.2938	0.3092	0.1919	0.3030	0.342	-0.720
8100	0.2928	0.3081	0.1916	0.3025	0.380	-0.708
8200	0.2919	0.3071	0.1913	0.3020	0.417	-0.695
8300	0.2910	0.3061	0.1911	0.3015	0.454	-0.682
8400	0.2901	0.3051	0.1908	0.3010	0.490	-0.667
8500	0.2892	0.3041	0.1906	0.3006	0.526	-0.652
9000	0.2853	0.2996	0.1894	0.2984	0.697	-0.566
9500	0.2818	0.2956	0.1884	0.2964	0.856	-0.471
10000	0.2788	0.2920	0.1876	0.2946	1.003	-0.369
10500	0.2761	0.2887	0.1868	0.2930	1.139	-0.265
11000	0.2737	0.2858	0.1861	0.2915	1.266	-0.160
12000	0.2697	0.2808	0.1850	0.2890	1.495	0.045
13000	0.2664	0.2767	0.1841	0.2868	1.693	0.239
14000	0.2637	0.2732	0.1834	0.2850	1.868	0.419
15000	0.2614	0.2702	0.1828	0.2835	2.021	0.586
17000	0.2578	0.2655	0.1818	0.2809	2.278	0.878

TABLE 1.1.3 (continued)

20000	0.2539	0.2603	0.1809	0.2781	2.571	1.231
25000	0.2499	0.2548	0.1798	0.2751	2.907	1.655
$\begin{aligned} & \left.5503^{2}\right) \\ & \left.6504^{3}\right) \\ & \left.7504^{4}\right) \end{aligned}$	$\begin{aligned} & 0.3324 \\ & 0.3127 \\ & 0.2990 \end{aligned}$	$\begin{aligned} & 0.3475 \\ & 0.3291 \\ & 0.3150 \end{aligned}$	$\begin{aligned} & 0.2044 \\ & 0.1978 \\ & 0.1935 \end{aligned}$	$\begin{aligned} & 0.3205 \\ & 0.3123 \\ & 0.3057 \end{aligned}$	$\begin{array}{r} -0.785 \\ -0.295 \\ 0.145 \end{array}$	$\begin{array}{r} -0.198 \\ -0.689 \\ -0.760 \end{array}$
${ }^{1}$) All correlated color temperatures T_{c} are based on $c_{2}=1.4388 \cdot 1 \sigma^{-2} \mathrm{~m} \cdot \mathrm{~K}$. ${ }^{2}$) Standard illuminant $D_{55} ; \quad T_{c}=5500(1.4388 / 1.4380)=5503 \mathrm{~K}$ (approximately) ${ }^{3}$) Standard illuminant $D_{65} ; \quad T_{c}=6500(1.4388 / 1.4380)=6504 \mathrm{~K}$ (approximately) 4) Standard illuminant $\mathrm{D}_{75} ; \quad \mathrm{T}_{\mathrm{c}}=7500(1.4388 / 1.4380)=7504 \mathrm{~K}$ (approximately)						

140
TABLE 1.1.4

$\begin{aligned} & \lambda \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \left(D_{55}\right) \\ & S(\lambda) \end{aligned}$	$\begin{aligned} & \left(\mathrm{D}_{75}\right) \\ & \mathrm{S}(\mathrm{\lambda}) \end{aligned}$
300	0.02	0.04
310	2.1	5.1
320	11.2	29.8
330	20.6	54.9
340	23.9	57.3
350	27.8	62.7
360	30.6	63.0
370	34.3	70.3
380	32.6	66.7
390	38.1	70.0
400	61.0	101.9
410	68.6	111.9
420	71.6	112.8
430	67.9	103.1
440	85.6	121.2
450	98.0	133.0
460	100.5	132.4
470	99.9	127.3
480	102.7	126.8
490	98.1	117.8
500	100.7	116.6
510	100.7	113.7
520	100.0	108.7
530	104.2	110.4
540	102.1	106.3
550	103.0	104.9
560	100.0	100.0
570	97.2	95.6
580	97.7	94.2
590	91.4	87.0
600	94.4	87.2
610	95.1	86.1
620	94.2	83.6
630	90.4	78.7
640	92.3	78.4
650	88.9	74.8
660	90.3	74.3
670	93.9	75.4
680	90.0	71.6
690	79.7	63.9
700	82.8	65.1
710	84.8	68.1
720	70.2	56.4
730	79.3	64.2
740	85.0	69.2
750	71.9	58.6
760	52.8	42.6
770	75.9	61.4
780	71.8	58.3
790	72.9	59.1
800	67.3	54.7
810	58.7	47.9
820	65.0	52.9
830	68.3	55.5

141
TABLE 9.1 .5

$\begin{gathered} \lambda \\ (\mathrm{nm}) \end{gathered}$	$\begin{aligned} & (A) \\ & S(\lambda) \end{aligned}$	$\begin{aligned} & \left.\mathrm{SO}_{65}\right) \\ & \mathrm{S}(\mathrm{x}) \\ & \hline \end{aligned}$	$\begin{gathered} \lambda \\ (n \mathrm{n}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline(A) \\ & S(\lambda) \\ & \hline \end{aligned}$	$\begin{aligned} & \left(\mathrm{D}_{65}\right) \\ & \mathbf{S}(\mathrm{n}) \\ & \hline \end{aligned}$
300	0.930483	0.0341000	355	5.41070	45.7750
301	0.967643	0.360140	356	5.55213	45.9477
302	1.00597	0.686180	357	5.69622	46.1203
303	1.04549	1.01222	358	5.842 .98	46.2930
304	1.08623	1.33826	359	5.99244	46.4656
305	1.12821	1.66430	360	6.14462	46.6383
306	1.17147	1.99034	361	6.29955	47.1834
307	1.21602	2.31638	362	6.45724	47.7285
308	1.26188	2.64242	363	6.61774	48.2735
309	1.30910	2.96846	364	6.78105	48.8186
310	1.35769	3.29450	365	6.94720	49.3637
311	1.40768	4.98865	366	7.11621	49.908
312	1.45910	6.68280	367	7.28811	50.453
313	1.51198	8.37695	368	7.46292	50.998
314	1.56633	10.0711	369	7.64066	51.544
315	1.62219	11.7652	370	7.82135	52.089
316	1.67959	13.4594	371	8.00501	51.8777
317	1.73855	15.1535	372	8.19167	51.6664
318	1.79910	16.8477	373	8.38134	51.455
319	1.86127	18.5418	374	8.57404	51.243
320	1.92508	20.2360	375	8.76980	51.0323
321	1.99057	21.9177	376	8.96864	50.8209
322	2.05776	23.5995	377	9.17056	50.6096
323	2.12667	25.2813	378	9.37561	50.3982
324	2.19734	26.9630	379	9.58378	50.1869
325	2.26980	28.6447	380	9.79510	49.975
326	2.34406	30.3265	381	10.0096	50.4428
327	2.42017	32.0082	382	10.2273	50.9100
328	2.49814	33.6900	383	10.4481	51.3773
329	2.57801	35.3717	384	10.6722	51.8446
330	2.65981	37.0535	385	10.8996	52.3118
331	2.74355	37.3430	386	11.1302	52.7791
332	2.82928	37.6326	387	11.3640	53.2464
333	2.91701	37.9221	388	11.6012	53.7137
334	3.00678	38.2116	389	11.8416	54.1809
335	3.09861	38.5011	390	12.0853	54.6482
336	3.19253	38.7907	391	12.3324	57.4589
337	3.28857	39.0802	392	12.5828	60.2695
338	3.38676	39.3697	393	12.8366	63.0802
339	3.48712	39.6593	394	13.0938	65.8909
340	3.58968	39.9488	395	13.3543	68.7015
341	3.69447	40.4451	396	13.6182	71.5122
342	3.80152	40.9414	397	13.8855	74.3229
343	3.91085	41.4377	398	14.1563	77.1336
344	4.02250	41.9340	399	14.4304	79.9442
345	4.13648	42.4302	400	14.7080	82.7549
346	4.25282	42.9265	401	14.9891	83.6280
347	4.37156	43.4228	402	15.2736	84.5011
348	4.49272	43.9191	403	15.5616	85.3742
349	4.61631	44.4154	404	15.8530	86.2473
350	4.74238	44.9117	405	16.1480	87.1204
351	4.87095	45.0844	406	16.4464	87.9936
352	5.00204	45.2570	407	16.7484	88.8667
353	5.13568	45.4297	408	17.0538	89.7398
354	5.27189	45.6023	409	17.3628	90.6129

TABLE 1.1 .5 (continued)

$\begin{gathered} \lambda \\ (\mathrm{nm}) \end{gathered}$	$\begin{aligned} & \hline(A) \\ & S(\lambda) \end{aligned}$	$\begin{gathered} \left.\mathrm{DO}_{65}\right) \\ \mathrm{S}(\mathrm{\lambda}) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \lambda \\ (n \mathrm{~m}) \end{array}$	(A) $S(\lambda)$	$\begin{aligned} & \left(\mathrm{D}_{66}\right) \\ & \mathbf{S}(\mathrm{\lambda}) \\ & \hline \end{aligned}$
410	17.6753	91.4860	465	40.3002	116.337
411	17.9913	91.6806	466	40.8076	116.041
412	18.3108	91.875	467	41.3182	115.746
413	18.6339	92.0697	468	41.8320	115.451
414	18.9605	92.264	469	42.3491	115.156
415	19.2907	92.458	470	42.8693	114.861
416	19.6244	92.6535	471	43.3926	114.967
417	19.9617	92.848	472	43.9192	115.073
418	20.3026	93.0426	473	44.4488	115.179
419	20.6470	93.2372	474	44.9816	115.286
420	20.9950	93.4318	475	45.5174	115.392
421	21.3465	92.7568	476	46.056	115.498
422	21.7016	92.081	477	46.5983	115.604
423	22.0603	91.406	478	47.1433	115.710
424	22.4225	90.732	479	47.6913	115.817
425	22.7883	90.057	480	48.2423	115.923
426	23.1577	89.382	481	48.796	115.212
427	23.5307	88.707	482	49.353	114.500
428	23.9072	88.032	483	49.9132	113.789
429	24.2873	87.357	484	50.4760	113.078
430	24.6709	86.682	485	51.0418	112.367
431	25.0581	88.500	486	51.6104	111.656
432	25.4489	90.318	487	52.1818	110.944
433	25.8432	92.137	488	52.7561	110.233
434	26.2411	93.955	489	53.3332	109.522
435	26.6425	95.773	490	53.9132	108.811
436	27.0475	97.591	491	54.4958	108.865
437	27.4560	99.410	492	55.0813	108.919
438	27.8681	101.228	493	55.6694	108.974
439	28.2836	103.047	494	56.2603	109.028
440	28.7027	104.865	495	56.8539	109.083
441	29.1253	106.079	496	57.4501	109.137
442	29.5515	107.293	497	58.0489	109.191
443	29.9811	108.508	498	58.6504	109.246
444	30.4142	109.722	499	59.2545	109.300
445	30.8508	110.936	500	59.8611	109.354
446	31.2909	112.151	501	60.4703	109.199
447	31.7345	113.365	502	61.0820	109.044
448	32.1815	114.579	503	61.6962	108.889
449	32.6320	115.793	504	62.3128	108.733
450	33.0859	117.008	505	62.9320	108.578
451	33.5432	117.088	506	63.5535	108.423
452	34.0040	117.169	507	64.1775	108.268
453	34.4682	117.249	508	64.8038	108.112
454	34.9358	117.329	509	65.432 s	107.957
455	35.4068	117.410	510	66.063 s	107.802
456	35.8811	117.490	511	66.6988	107.501
457	36.3588	117.571	512	67.3324	107.199
458	36.8399	117.651	513	67.9702	106.898
459	37.3243	117.732	514	68.6102	106.597
460	37.8121	117.812	515	69.2525	106.296
461	38.3031	117.517	516	69.8969	105.995
462	38.7975	117.222	517	70.5435	105.693
463	39.2951	116.927	518	71.1922	105.392
464	39.7960	116.632	519	71.8430	105.091

143

TABLE 1.1.5 (continued)

$\begin{aligned} & \lambda \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & (A) \\ & S(\lambda) \end{aligned}$	$\begin{aligned} & \left(D_{65}\right) \\ & S(\lambda) \end{aligned}$	$\begin{gathered} \lambda \\ (\mathrm{nm}) \end{gathered}$	(A) $S(\lambda)$	$\begin{aligned} & \left(D_{65}\right) \\ & S(\lambda) \end{aligned}$
520	72.4959	104.790	575	110.803	96.0611
521	73.1508	105.080	576	111.529	96.0065
522	73.8077	105.370	577	112.255	95.9519
523	74.4666	105.660	578	112.982	95.8972
524	75.1275	105.950	579	113.709	95.8426
525	75.7903	106.240	580	114.436	95.7880
526	76.4551	106.530	581	115.164	95.0778
527	77.1217	106.820	582	115.893	94.3675
528	77.7902	107.110	583	116.622	93.6573
529	78.4605	107.400	584	117.351	92.9470
530	79.1326	107.689	585	118.080	92.2368
531	79.8065	107.361	586	118.810	91.5266
532	80.4821	107.033	587	119.540	90.8163
533	81.1595	106.704	588	120.270	90.1061
534	81.8386	106.376	589	121.001	89.3958
535	82.5193	106.047	590	121.731	88.6856
536	83.2017	105.719	591	122.462	88.8177
537	83.8856	105.391	592	123.193	88.9497
538	84.5712	105.062	593	123.924	89.0818
539	85.2584	104.734	594	124.655	89.2138
540	85.9470	104.405	595	125.386	89.3459
541	86.6372	104.370	596	126.118	89.4780
542	87.3288	104.334	597	126.849	89.6100
543	88.0219	104.298	598	127.580	89.7421
544	88.7165	104.262	599	128.312	89.8741
545	89.4124	104.226	600	129.043	90.0062
546	90.1097	104.190	601	129.774	89.9655
547	90.8083	104.154	602	130.505	89.9248
548	91.5082	104.118	603	131.236	89.8841
549	92.2095	104.082	604	131.966	89.8434
550	92.9120	104.046	605	132.697	89.8026
551	93.6157	103.642	606	133.427	89.7619
552	94.3206	103.237	607	134.157	89.7212
553	95.0267	102.832	608	134.887	89.6805
554	95.7339	102.428	609	135.617	89.6398
S5S	96.4423	102.023	610	136.346	89.5991
556	97.1518	101.618	611	137.075	89.4091
557	97.8623	101.214	612	137.804	89.2190
558	98.5739	100.809	613	138.532	89.0290
559	99.2864	100.405	614	139.260	88.8389
560	100.000	100.000	615	139.988	88.6489
561	100.715	99.6334	616	140.715	88.4589
562	101.430	99.2668	617	141.441	88.2688
563	102.146	98.9003	618	142.167	88.0788
564	102.864	98.5337	619	142.893	87.8887
565	103.582	98.1671	620	143.618	87.6987
566	104.301	97.8005	621	144.343	87.2577
567	105.020	97.4339	622	145.067	86.8167
568	105.741	97.0674	623	145.790	86.3757
569	106.462	96.7008	624	146.513	85.9347
570	107.184	96.3342	625°	147.235	85.4936
571	107.906	96.2796	626	147.957	85.0526
572	108.630	96.2250	627	148.678	84.6116
573	109.354	96.1703	628	149.398	84.1706
574	110.078	96.1157	629	150.117	83.7296

TABLE 1.1.5 (continued)

$\begin{aligned} & \lambda \\ & (\mathrm{nm}) \end{aligned}$	(A) S(A)	$\begin{aligned} & \left(D_{65}\right) \\ & S(\lambda) \end{aligned}$	$\begin{aligned} & \lambda \\ & (\mathrm{nm}) \end{aligned}$	(A) $S(\lambda)$	$\begin{aligned} & \left(D_{65}\right) \\ & s(\lambda) \end{aligned}$
630	150.836	83.2886	685	188.701	74.0027
631	151.554	83.3297	686	189.350	73.1465
632	152.271	83.3707	687	189.998	72.2902
633	152.988	83.4118	688	190.644	71.4339
634	153.704	83.4528	689	191.288	70.5776
635	154.418	83.4939	690	191.931	69.7213
636	155.132	83.5350	691	192.572	$69: 9101$
637	155.845	83.5760	692	193.211	70.0989
638	156.558	83.6171	693	193.849	70.2876
639	157.269	83.6581	694	194.484	70.4764
640	157.979	83.6992	695	195.118	70.6652
641	158.689	83.3320	696	195.750	70.8540
642	159.397	82.9647	697	196.381	71.0428
643	160.104	82.5975	698	197.009	71.2315
644	160.811	82.2302	699	197.636	71.4203
645	161.516	81.8630	700	198.261	71.6091
646	162.221	81.4958	701	198.884	71.8831
647	162.924	81.1285	702	199.506	72.1571
648	163.626	80.7613	703	200.125	72.4311
649	164.327	80.3940	704	200.743	72.7051
650	165.028	80.0268	705	201.359	72.9790
651	165.726	80.0456	706	201.972	73.253 .0
652	166.424	80.0644	707	202.584	73.5270
653	167.121	80.0831	708	203.195	73.8010
654	167.816	80.1019	709	203.803	74.0750
655	168.510	80.1207	710	204.409	74.3490
656	169.203	80.1395	711	205.013	73.0745
657	169.895	80.1583	712	205.616	71.8000
658	170.586	80.1770	713	206.216	70.5255
659	171.275	80.1958	714	206.815	69.2510
660	171.963	80.2146	715	207.411	67.9765
661	172.650	80.4209	716	208.006	66.7020
662	173.335	80.6272	717	208.599	65.4275
663	174.019	80.8336	718	209.189	64.1530
664	174.702	81.0399	719	209.778	62.8785
665	175.383	81.2462	720	210.365	61.6040
666	176.063	81.4525	721	210.949	62.4322
667	176.741	81.6588	722	211.532	63.2603
668	177.419	81.8652	723	212.112	64.0885
669	178.094	82.071 S	724	212.691	64.9166
	178.769	82.2778	725	213.268	65.7448
671	179.441	81.8784	726	213.842	66.5730
672	180.113	81.4791	727	214.415	67.4011
673	180.783	81.0797	728	214.985	68.2293
674	181.451	80.6804	729	215.553	69.0574
675	182.118	80.2810	730	216.120	69.8856
676	182.783	79.8816	731	216.684	70.4057
677	183.447	79.4823	732	217.246	70.9259
678	184.109	79.0829	733	217.806	71.4460
679	184.770	78.6836	734	218.364	71.9662
680	185.429	78.2842	735	218.920	72.4863
681	186.087	77.4279	736	219.473	73.0064
682	186.743	76.5716	737	220.025	73.5266
683	187.397	75.7153	738	220.574	74.0467
684	188.050	74.8590	739	221.122	74.5669

TABLE 1.1.5 (continued)

$\begin{gathered} \mathrm{A} \\ (\mathrm{~nm}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline(A) \\ & S(X) \end{aligned}$	$\begin{aligned} & \left(\mathrm{D}_{65}\right) \\ & S(\lambda) \\ & \hline \end{aligned}$	$\begin{gathered} \lambda \\ (\mathrm{nm}) \end{gathered}$	$\begin{aligned} & (A) \\ & S(X) \end{aligned}$	$\begin{aligned} & \left(\mathrm{D}_{65}\right) \\ & \mathrm{S}(\lambda) \\ & \hline \end{aligned}$
740	221.667	75.0870	785	243.924	63.8434
741	222.210	73.9376	786	244.367	63.9355
742	222.751	72.7881	787	244.808	64.0276
743	223.290	71.6387	788	245.246	64.1198
744	223.826	70.4893	789	245.682	64.2119
745	224.361	69.3398	790	246.116	64.3040
746	224.893	68.1904	791	246.548	63.8188
747	225.423	67.0410	792	246.977	63.3336
748	225.951	65.8916	793	247.404	62.8484
749	226.477	64.7421	794	247.829	62.3632
750	227.000	63.5927	795	248.251	61.8779
751	227.522	61.8752	796	248.671	61.3927
752	228.041	60,157 8	797	249.089	60.9075
753	228.558	58.4404	798	249.505	60.4223
754	229.073	56.7229	799	249.918	59.9371
755	229.585	55.0054	800	250.329	59.4519
756	230.096	53.2880	801	250.738	58.7026
757	230.604	51.5705	802	251.144	57.9533
758	231.110	49.8531	803	251.548	57.2040
759	231.614	48.1356	804	251.950	56.4547
760	232.115	46.4182	805	252.350	55.7054
761	232.615	48.4569	806	252.747	54.9562
762	233.112	50.4956	807	253.142	54.2069
763	233.606	52.5344	808	253.535	53.4576
764	234.099	54.5731	809	253.925	52.7083
765	234.589	56.6118	810	254.314	51.9590
766	235.078	58.6505	811	254.700	52.5072
767	235.564	60.6892	812	255.083	53.0553
768	236.047	62.7280	813	255.465	53.6035
769	236.529	64.7667	814	255.844	54.1516
770	237.008	66.8054	815	256.221	54.6998
771	237.485	66.4631	816	256.595	55.2480
772	237.959	66.1209	817	256.968	55.7961
773	238.432	65.7786	818	257.338	56.344
774	238.902	65.4364	819	257.706	56.8924
775	239.370	65.0941	820	258.071	57.4406
776	239.836	64.7518	821	258.434	57.7278
777	240.299	64.4096	822	258.795	58.0150
778	240.760	64.0673	823	259.154	58.3022
779	241.219	63.7251	824	259.511	58.5894
780	241.675	63.3828	825	259.865	58.8765
781	242.130	63.4749	826	260.217	59.1637
782	242.582	63.5670	827	260.567	59.4509
783	243.031	63.6592	828	260.914	59.7381
784	243.479	63.7513	829	261.259	60.0253
			830	261.602	60.3125

146

TABLE 1.1.6

1. For CIE 1931 standard colorinetric observer as defined in Table 2.3.1, and illuminants A, B, C, $\mathrm{D}_{65}{ }^{2 s}$ defined in Table 1.1.1 (5 nm intervals).

Illuminant				
	x	y	u	\mathbf{v}
A	0.447581	0.407444	0.255974	0.349529
B	0.348424	0.351608	0.213677	0.323444
D $_{65}$	0.310063	0.316158	0.200890	0.307259

2. For CIE 1964 supplementary standard colorimetric observer as defined in Table 2.3 .2 , and illuminants A, B, C, D_{65} as defined
in Table 1.1 .1 (5 nm intervals).

3. For CIE 1931 standard colorimetric observer as defined in Table 2.1, and illuminants A and D_{65} as defined in Table 1.1.5 (1 nm intervals).

Illuminant	x	y	4	v
$\begin{aligned} & \mathrm{A}_{65} \end{aligned}$	$\begin{array}{llll} 0.447 & 573 & 514 & 1 \\ 0.312 & 726 & 866 & 0 \end{array}$	$\begin{array}{llll} 0.407 & 439 & 444 & 3 \\ 0.329 & 023 & 512 & 6 \end{array}$	$\begin{array}{llll} 0.255 & 971 & 079 & 0 \\ 0.197 & 839 & 856 & 0 \end{array}$	$\begin{array}{llll} 0.349 & 527 & 097 & 4 \\ 0.312 & 224 & 363 & 0 \end{array}$

147

TABLE 1.1.6 (continued)

4. For CIE 1964 supplementary standard colorimetric observer as defined in Table 2.2 , and illuminants A and D_{65} as defined in Table 1.1 .5 (1 nm intervals).

Dluminant	${ }^{1} 10$	${ }^{\mathrm{y}} 10$	${ }_{10}$	${ }^{*} 10$
${\stackrel{A}{D_{65}}}^{\text {a }}$	$\begin{array}{llll} 0.451 & 173 & 939 & 7 \\ 0.313 & 823 & 671 & 7 \end{array}$	$\begin{array}{llll} 0.405 & 936 & 604 & 2 \\ 0.330 & 999 & 256 & 6 \end{array}$	$\begin{array}{llll} 0.258 & 964 & 541 & 5 \\ 0.197 & 860 & 446 & 9 \end{array}$	$\begin{array}{llll} 0.349 & 498 & 865 & 1 \\ 0.313 & 034 & 038 & 2 \end{array}$

5. For CIE 1931 standard colorimetric observer as defined in Table 2.3.1, and illuminants $\mathrm{D}_{55}{ }^{\text {and }} \mathrm{D}_{75}$ as defined in Table 1.1 .4 (10 nm intervals).

Iluminant				
	x	y	u	v
D_{55}	0.332407	0.347548	0.204377	0.320529
D_{75}	0.299023	0.314961	0.193496	0.305714

6. For CIE 1964 supplementary standard colorimetric observer as defined in Table 2.3 .2 , and illuminants D_{55} and D_{75} as defined in Table 1.1 .4 (10 nm intervals).

Illuminant				
	x_{10}	y_{10}	u_{10}	v_{10}
D_{55}	0.334059	0.348694	0.205063	0.321071
D_{75}	0.299631	0.317307	0.193048	0.306655

148
TABLE 2.1

TABLE 2.1 (continued)

$\underset{(\mathrm{nm})}{\lambda}$	SPECTRAL TRISTIMULUS VALUES			CHROMATICITY COORDINATES		
	$\overline{\mathrm{x}}$ (入)	$\bar{y}(\lambda)$	$\overline{\mathbf{z}}$ ()	$x(\lambda)$	$y(\lambda)$	2(λ)
410	0.04351000	0.001210000	0.2074000	0.17258	0.00480	0.82262
11	0.04899560	0.001362091	0.2336921	0.17249	0.00480	0.82271
12	0.05502260	0.001530752	0.2626114	0.17239	0.00480	0.82281
13	0.06171880	0.001720368	0.2947746	0.17230	0.00480	0.82290
14	0.06921200	0.001935323	0.3307985	0.17219	0.00482	0.82299
415	0.07763000	0.002180000	0.3713000	0.17209	0.00483	0.82308
16	0.08695811	0.002454800	0.4162091	0.17198	0.00486	0.82316
17	0.09717672	0.002764000	0.4654642	0.17187	0.00489	0.82314
18	0.1084063	0.003117800	0.5196948	0.17174	0.00494	0.82332
19	0.1207672	0.003526400	0.5795303	0.17159	0.00501	0.82340
420	0.1343800	0.004000000	0.6456000	0.17141	0.00510	0.82349
21	0.1493582	0.004546240	0.7184838	0.17121	0.00521	0.82358
22	0.1653957	0.005159320	0.7967133	0.17099	0.00533	0.82368
23	0.1819831	0.005829280	0.8778459	0.17077	0.00547	0.82376
24	0.1986110	0.006546160	0.9594390	0.17054	0.00562	0.82384
425	0.2147700 0.2301868	0.007300000 0.008086507	1.0390501 1.115367	0.170 0.170 0	0.005 0.0059 0	
26 27	0.2301868 0.2448797	0.008 0.086 0.008 008 120	1.1153673 1.188497	0.17005 0.16978	$\begin{array}{ll}0.005 & 97 \\ 0.006 & 18\end{array}$	0.82398 0.824 0.
28	0.2587773	0.009767680	$1.258123 \quad 3$	0.16950	0.00640	0.82410
29	0.2718079	0.01066443	1.3239296	0.16920	0.00664	0.82416
430	0.2839000	0.01160000	1.3856000	0.16888	0.00690	0.82422
31	0.2949438	0.01257317	1.4426352	0.16853	0.00718	0.82429
32	0.3048965	0.01358272	1.4948035	0.168 15	0.00749	0.82436
33	0.3137873	0.01462968	1.5421903	0.16775	0.00782	0.82443
34	0.3216454	0.01571509	1.5848807	0.16733	0.00817	0.82450
435	0.3285000 0.3343513	0.01684000 0.018	1.6229600 1.6564048	0.16690 0.16645	0.008 0.008 6	
36 37	0.3343513 0.3392101	0.01800736 0.01921448	1.6564048 1.685 1.759	0.16645 0.16598	0.00896 0.00940	0.824 0.824 0.82
38	0.3431213	0.02045392	1.7098745	0.16548	0.00987	0.82465
39	0.3461296	0.02171824	1.7303821	0.16496	0.01035	0.82469
440	0.3482800	0.02300000	1.7470600	0.16441	0.01086	0.82473
41	0.3495999	0.02429461	1.7600446	0.16383	0.01138	0.82479
42	0.3501474	0.02561024	1.7696233	0.16321	0.01194	0.82485
43	0.3500130	0.02695857	1.7762637	0.16255	0.01252	0.82493
44	0.3492870	0.02835125	1.7804334	0.16185	0.01314	0.82501
445	0.3480600	0.02980000	1.7826000	$\begin{array}{lll}0.161 & 11 \\ 0.160 & 31\end{array}$	0.01379 0.014 0	
46	0.3463733	0.03131083	1.7829682	0.16031	0.01449	$0.825 \quad 20$
47	0.3442624	0.03288368	1.781699 .8	0.15947	0.01523	0.82530
48	0.3418088	0.03452112	1.7791982	0.15857	0.01602	0.82541
49	0.3390941	0.03622571	1.7758671	0.15763	0.01684	0.825 53
450	0.3362000	0.03800000	1.7721100	0.15664	0.01771	0.82565
51	0.3331977	0.03984667	1.7682589	0.15560	0.01861	0.82579
52	0.3300411	0.04176800	1.7640390	0.15452	0.01956	0.82592
53	0.3266357	0.04376600	1.7589438	0.15340	0.02055	0.82605
54	0.3228868	0.04584267	1.7524663	0.15222	0.02161	0.82617
455	0.3187000	0.04800000	1.744100 Q	0.15099	0.02274	0.82627
56	0.3140251	0.05024368	1.7335595	0.14969	0.02395	0.82636
57	0.3088840	0.05257304	1.7208581	0.14834	0.02525	0.82641
58	0.3032904	0.05498056	1.7059369	0.14693	0.02663	0.82644
59	0.2972579	0.05745872	1.6887372	0.14547	0.02812	0.82641

TABLE 2.1! CONTINJED)

$\underset{(\mathrm{nm})}{\boldsymbol{\lambda}}$	SPECTRAL TRISTIMULUS VALUES			CHROMATICITY COORDINATES		
	$\overline{\mathrm{x}}(\lambda)$	$\bar{y}(\lambda)$	$\overline{\mathbf{z}}(\lambda)$	$x(\lambda)$	$y(\lambda)$	z(λ)
460	0.2908000	0.06000000	1.6692000	0.14396	0.02970	0.82634
61	0.2839701	0.06260197	1.6475287	0.14241	0.03139	0.82620
62	0.2767214	0.06527752	1.6234127	0.14080	0.03321	0.82599
63	0.2689178	0.06804208	1.5960223	0.13912	0.03520	0.82568
64	0.2604227	0.07091109	1.5645280	0.13737	0.03740	0.82523
465	0.2511000	0.07390000	1.5281000	0.13550	0.03988	0.82462
66	0.2408475	0.07701600	1.4861114	0.13351	0.04269	0.82380
67	0.2298512	0.08026640	1.4395215	0.13137	0.04588	0.82275
68	0.2184072	0.08366680	1.3898799	0.12909	0.04945	0.82146
69	0.206811 s	0.08723280	1.3387362	0.12666	0.05343	0.81991
470	0.1953600	0.09098000	1.2876400	0.12412	0.05780	0.81808
71	0.1842136	0.09491755	1.2374223	0.12147	0.06259	0.81594
72	0.1733273	0.09904584	1.1878243	0.11870	0.06783	0.81347
73	0.1626881	0.1033674	1.1387611	0.11581	0.07358	0.81061
74	0.1522833	0.1078846	1.0901480	0.11278	0.07989	0.80733
475	0.1421000	0.1126000	1.0419000	0.10960	0.08684	0.80356
76	0.1321786	0.1175320	0.9941976	0.10626	0.09449	0.79925
77	0.1225696	0.1226744	0.9473473	0.10278	0.10286	0.79436
78	0.1132752	0.1279928	0.9014531	0.09913	0.11201	0.78886
79	0.1042979	0.1334528	0.8566193	0.09531	0.12194	0.78275
480	0.09564000	0.1390200	0.8129501	0.09129	0.13270	0.77601
81	0.08729955	0.1446764	0.7705173	0.08708	0.14432	0.76860
82	0.07930804	0.1504693	0.7294448	0.08268	0.15687	0.76045
83	0.07171776	0.1564619	0.6899136	0.07812	0.17042	0.75146
84	0.06458099	0.1627177	0.6521049	0.07344	0.18503	0.74153
485	0.05795001	0.1693000	0.6162000	0.06871	0.20072	0.73057 0.71854
86	0.05186211	0.1762431	0.5823286	0.06399	0.21747	0.71854
87	0.04628152	0.1835581	0.5504162	0.05932	0.23525	0.70543
88	0.04115088	0.1912735	0.5203376	0.05467	0.25409	0.69124
89	0.03641283	0.1994180	0.4919673	0.05003	0.27400	0.67597
490	0.03201000	0.2080200	0.4651800	0.04539	0.29498	0.65963
91	0.02791720	0.2171199	0.4399246	0.04076	0.31698	0.64226
92	0.02414440	0.2267345	0.4161836	0.03620	0.33990	0.62390
93	0.02068700	0.2368571	0.3938822	0.03176	0.36360	0.60464
94	0.01754040	0.2474812	0.3729459	0.02749	0.38792	0.58459
495	0.01470000	0.2586000	0.3533000	0.02346	0.41270	0.56384
96	0.01216179	0.2701849	0.3348578	0.01970	0.43776	0.54254
97	0.009919960	0.2822939	0.3175521	0.01627	0.46295	0.52078
98	0.007967240	0.2950505	0.3013375	0.01318	0.48821	0.49861
99	0.006296346	0.3085780	0.2861686	0.01048	0.51340	0.47612
500	0.004900000	0.3230000	0.2720000	0.00817	0.53842	0.45341
01	0.003777173	0.3384021	0.2588171	0.00628	0.56307	0.43065
02	0.002945320	0.3546858	0.2464838	0.00487	0.58712	0.40801
03	0.002424880	0.3716986	0.2347718	0.00398	0.61045	0.38557
04	0.002236293	0.3892875	0.2234533	0.00364	0.63301	0.36335
505	0.002400000	0.4073000	0.2123000	0.00386	0.65482	0.34132
06	0.002925520	0.4256299	0.2011692	0.00464	0.67590	$0.319-46$
07	0.003836560	0.4443096	0.1901196	0.00601	0.69612	0.29787
08	0.005174840	0.4633944	0.1792254	0.00799	0.71534	0.27667
09	0.006982080	0.4829395	0.1685608	0.01060	0.73341	0.25599

151
TABLE 2.1. (continued)

$\stackrel{\lambda}{(\mathrm{nm})}$	SPECTRAL TRISTIMULUS VALUES			CHROMATICITY COORDINATES		
	$\overline{\mathrm{x}}(\mathrm{\lambda})$	$\bar{y}(\lambda)$	$\bar{z}(\lambda)$	$x(\lambda)$	$y(\lambda)$	2(A)
510	0.009300000	0.5030000	0.1582000	0.01387	0.75019	0.23594
11	0.01214949	0.5235693	0.1481383	0.01777	0.76561	0.21662
12	0.01553588	0.5445120	0.1383758	0.02224	0.77963	0.19813
13	0.01947752	0.5656900	0.1289942	0.02727	0.79211	0.18062
14	0.02399277	0.5869653	0.1200751	0.03282	0.80293	0.16425
515	0.02910000	0.6082000	0.1117000	0.03885	0.81202	0.14913
16	0.03481485	0.6293456	0.1039048	0.04533	0.81939	0.13528
17	0.04112016	0.6503068	0.09666748	0.05218	0.82516	0.12266
18	0.04798504	0.6708752	0.08998272	0.05932	0.82943	0.11125
19	0.05537861	0.6908424	0.08384531	0.06672	0.83227	0.10101
520	0.06327000	0.7100000	0.07824999	0.07430	0.83380	0.09190
21	0.07163501	0.7281852	0.07320899	0.08205	0.83409	0.08386
22	0.08046224	0.7454636	0.06867816	0.08994	0.83329	0.07677
23	0.08973996	0.7619694	0.06456784	0.09794	0.83159	0.07047
24	0.09945645	0.7718368	0.06078835	0.10602	0.82918	0.06480
525	0.1096000	0.7932000	0.05725001	0.11416	0.82621	0.05963
26	0.1201674	0.8081104	0.05390435	0.12235	0.82277	0.05488
27	0.1311145	0.8224962	0.05074664	0.13055	0.81893	0.05052
28	0.1423679	0.8363068	0.04775276	0.13870	0.81478	0.04652
29	0.1538542	0.8494916	0.04489859	0.14677	0.81040	0.04283
530	0.1655000	0.8620000	0.04216000	0.15472	0.80586	0.03942
31	0.1772571	0.8738108	0.03950728	0.16253	0.80124	0.03623
32	0.1891400	0.8849624	0.03693564	0.17024	0.79652	0.03324
33	0.2011694	0.8954936	0.03445836	0.17785	0.79169	0.03046
34	0.2133658	0.9054432	0.03208872	0.18539	0.78673	0.02788
535	0.2257499	0.9148501	0.02984000	0.19288	0.78163	0.02549
36	0.2383209	0.9237348	0.02771181	0.20031	0.77640	0.02329
37	0.2510668	0.9320924	0.02569444	0.20769	0.77105	0.02126
38	0.2639922	0.9399226	0.02378716	0.21503	0.76559	0.01938
39	0.2771017	0.9472252	0.02198925	0.22234	0.76002	0.01764
540	0.2904000	0.9540000	0.02030000	0.22962	0.75433	0.01605
41	0.3038912	0.9602561	0.01871805	0.23689	0.74852	0.01459
42	0.3175726	0.9660074	0.01724036	0.24413	0.74262	0.01325
43	0.3314384	0.9712606	0.01586364	0.25136	0.73661	0.01203
44	0.3454828	0.9760225	0.01458461	0.25858	0.73051	0.01091
545	0.3597000	0.9803000	0.01340000	0.26578	0.72432	0.00990
46	0.3740839	0.9840924	0.01230723	0.27296	0.71806	0.00898
47	0.3886396	0.9874182	0.01130188	0.28013	0.71172	0.00815
48	0.4033784	0.9903128	0.01037792	0.28729	0.70532	0.00739
49	0.4183115	0.9928116	0.009529306	0.29445	0.69884	0.00671
550	0.4334499	0.9949501	0.008749999	0.30160	0.69231	0.00609
51	0.4487953	0.9967108	0.008035200	0.30876	0.68571	0.00553
52	0.4643360	0.9980983	0.007381600	0.31592	0.67906	0.00502
53	0.4800640	0.9991120	0.006785400	0.32306	0.67237	0.00457
54	0.4959713	0.9997482	0.006242800	0.33021	0.66563	0.00416
555	0.5120501	1.0000000	0.005749999	0.33736	0.65885	0.00379
56	0.5282959	0.9998567	0.005303600	0.34451	0.65203	0.00346
57	0.5446916	0.9993046	0.004899800	0.35167	0.64517	0.00316
58	0.5612094	0.9983255	0.004534200	0.35881	0.63829	0.00290
59	0.5778215	0.9968987	0.004202400	0.36596	0.63138	0.00266

TABLE 2.1 (continued)

$\underset{(\mathrm{nm})}{\lambda}$	SPECTRAL TRISTIMULUS VALUES			CHROMATICITY COORDINATES		
	$\overline{\mathrm{x}}$ (A$)$	$\overline{\mathbf{y}}(\lambda)$	$\overline{\mathbf{z}}(\mathrm{\lambda})$	$x(\lambda)$	$y(\lambda)$	$2(\lambda)$
560	0.5945000	0.9950000	0.003900000	0.37310	0.62445	0.00245
61	0.6112209	0.9926005	0.003623200	0.38024	0.61750	0.00226
62	0.6279758	0.9897426	0.003370600	0.38738	0.61054	0.00208
63	0.6447602	0.9864444	0.003141400	0.39451	0.60357	0.00192
64	0.6615697	0.9827241	0.002934800	0.40163	0.59659	0.00178
565	0.6784000	0.9786000	0.002749999	0.40873	0.58961	0.00166
66	0.6952392	0.9740837	0.002585200	0.41583	0.58262	0.00155
67	0.7120586	0.9691712	0.002438600	0.42292	0.57563	0.00145
68	0.7288284	0.9638568	0.002309400	0.42999	0.56865	0.00136
69	0.7455188	0.9581349	0.002196800	0.43704	0.56167	0.00129
570	0.7621000	0.9520000	0.002100000	0.444 06	0.55472	0.00122
71	0.7785432	0.9454504	0.002017733	0.45106	0.54777	0.00117
72	0.7948256	0.9384992	0.001948200	0.45804	0.54084	0.00112
73	0.8109264	0.9311628	0.001889800	0.46499	0.53393	0.00108
74	0.8268248	0.9234576	0.001840933	0.47190	0.52705	0.00105
575	0.8425000	0.9154000	0.001800000	0.47878	0.52020	0.00102
76	0.8579325	0.9070064	0.001766267	0.48561	0.51339	0.00100
77	0.8730816	0.8982772	0.001737800	0.49241	0.50661	0.00098
78	0.8878944	0.8892048	0.001711200	0.49915	0.49989	0.00096
79	0.9023181	0.8797816	0.001683067	0.50585	0.49321	0.00094
580	0.9163000	0.8700000	0.001650001	0.51249	0.48659	0.00092
81	0.9297995	0.8598613	0.001610133	0.51907	0.48003	0.00090
82	0.9427984	0.8493920	0.001564400	0.52560	0.47353	0.00087
83	0.9552776	0.8386220	0.001513600	0.53207	0.46709	0.00084
84	0.9672179	0.8275813	0.001458533	0.53846	0.46073	0.00081
585	0.9786000	0.8163000	0.001400000	0.54479	0.45443	0.00078
86	0.9893856	0.8047947	0.001336667	0.55103	0.44823	0.00074
87	0.9995488	0.7930820	0.001270000	0.55719	0.44210	0.00071
88	1.0090892	0.7811920	0.001205000	0.56327	0.43606	0.00067
89	1.0180064	0.7691547	0.001146667	0.56926	0.43010	0.00064
590	1.0263000	0.7570000	0.001100000	0.57515	0.42423	0.00062
91	1.0339827	0.7447541	0.001068800	0.58094	0.41846	0.00060
92	1.0409860	0.7324224	0.001049400	0.58665	0.41276	0.00059
93	1.0471880	0.7200036	0.001035600	0.59222	0.40719	0.00059
94	1.0524667	0.7074965	0.001021200	0.59766	0.40176	0.00058
595	1.0567000	0.6949000	0.001000000	0.60293	0.3960	0.00057
96	1.0597944	0.6822192	0.0009686400	0.60803	0.39141	0.00056
97	1.0617992	0.6694716	0.0009299200	0.61298	0.38648	0.00054
98	1.0628068	0.656674	0.0008868800	0.61778	0.38171	0.00051
99	1.0629096	0.6438448	0.0008425600	0.62246	0.37705	0.00049
600	1.0622000	0.6310000	0.0008000000	0.62704	0.37249	0.00047
01	1.0607352	0.6181555	0.0007609600	0.63152	0.36803	0.00045
02	1.0584436	0.6053144	0.0007236800	0.63590	0.36367	0.00043
03	1.0552244	0.5924756	0.0006859200	0.64016	0.35943	0.00041
04	1.0509768	0.5796379	0.0006454400	0.64427	0.35533	0.00040
605	1.0456000	0.5668000	0.0006000000	0.64823	0.35140	0.00037
06	1.0390369	0.5539611	0.0005478667	0.65203	0.34763	0.00034
07	1.0313608	0.5411372	0.0004916000	0.65567	0.34402	0.00031
08	1.0226662	0.5283528	0.0004354000	0.65917	0.34055	0.00028
09	1.0130477	0.5156323	0.000383466	0.66253	0.33722	0.00025

153
TABLE 2.1 (continued)

154
TABLE 2.1 (continued)

	SPECTRALTRISTIMULUS VALUES			CHROMATICITY COORDINATES		
$\underset{(\mathrm{nm})}{\lambda}$	$\overline{\mathbf{x}}(\lambda)$	$\bar{y}(\lambda)$	$\overline{\mathbf{z}}(\lambda)$	$x(\lambda)$	$y(\lambda)$	$\mathbf{z}(\lambda)$
655	0.2187000	0.08160000	0.0000000	0.72827	0.27173	0.00000
56	0.2070971	0.07712064		0.72866	0.27134	
57	0.1959232	0.07282552		0.72902	0.27098	
58	0.1851708	0.06871008		0.72936	0.27064	
59	0.1748323	0.06476976		0.72968	0.27032	
660	0.1649000	0.06100000		0.72997	0.27003	
61	0.1553667	0.05739621		0.73023	0.26977	
62	0.1462300	0.05395504		0.73047	0.26953	
63	0.1374900	0.05067376		0.73069	0.26931	
64	0.1291467	0.04754965		0.73090	0.26910	
665	0.1212000	0.04458000		0.73109	0.26891	
66	0.1136397	0.04175872		0.73128	0.26872	
67	0.1064650	0.03908496		0.73147	0.26853	
68	0.09969044	0.03656384		0.73165	0.26835	
69	0.09333061	0.03420048		0.73183	0.26817	
670	0.08740000	0.03200000		0.73199	0.26801	
71	0.08190096	0.02996261		0.73215	0.26785	
72	0.07680428	0.02807664		0.73230	0.26770	
73	0.07207712	0.02632936		0.73244	0.26756	
74	0.06768664	0.02470805		0.73258	0.26742	
675	0.06360000	0.02320000		0.73272	0.26728	
76	0.05980685	0.02180077		0.73286	0.26714	
77	0.05628216	0.02050112		0.73300	0.26700	
78	0.05297104	0.01928108		0.73314	0.26686	
79	0.04981861	0.01812069		0.73328	0.26672	
680	0.04677000	0.01700000		0.73342	0.26658	
81	0.04378405	0.01590379		0.73355	0.26645	
82	0.04087536	0.01483718		0.73368	0.26632	
83	0.03807264	0.01381068		0.73381	0.26619	
84	0.03540461	0.01283478		0.73394	0.26606	
685	0.03290000	0.01192000		0.73405	0.26595	
86	0.03056419	0.01106831		0.73414	0.26586	
87	0.02838056	0.01027339		0.73422	0.26578	
88	0.02634484	0.009533311		0.73429	0.26571	
89	0.02445275	0.008846157		0.73434	0.26566	
690	0.02270000	0.008210000		0.73439	0.26551 0.265 0	
91	0.02108429	0.007623781		0.73444	0.26556	
92	0.01959988	0.007085424		0.73448	0.26552	
93	0.01823732	0.006591476		0.73452	0.26548	
94	0.01698717	0.006138485		0.73456	0.26544	
695	0.01584000	0.005 723000		0.73459 0.734 02	0.26541 $0.265 ~$	
96	0.01479064	0.005343059		0.734 62 0.734 65	0.26538	
97	0.01383132	0.004995796		0.73465	0.26535	
98 99	0.01294868	0.004676404 0		0.73467 0.734 69	0.26533 0.26531	
99	0.01212920	0.004380075		0.73469	0.26531	
700	0.01135916	0.004102000		0.73469 0.734	0.26531	
01	0.01062935	0.003838453		0.73469	0.26531	
02	0.009938846	0.003589099		0.73469	0.26531	
03	0.009288422	$\begin{array}{lll}0.003 & 354 & 219 \\ 0.003 & 134 & 093\end{array}$		0.73469 0.73469	0.265 0.265 31	
04	0.008678854	0.003134093		0.73469	0.26531	

TABLE 2.1 (continued)

TABLE 2.1 (continued)

TABLE 2.1(CONTINUED)

158
TABLE 2.2

159

TABLE 2.2 (continued)

$\stackrel{\lambda}{(\mathrm{nm})}$	SPECTRAL TRISTIMULUS VALUES			CHROMATICITY COORDINATES		
	$\bar{x}_{10}{ }^{(\lambda)}$	$\overline{\mathbf{y}}_{10}{ }^{(\lambda)}$	$\bar{z}_{10}{ }^{(\lambda)}$	${ }^{1} 10{ }^{(\lambda)}$	${ }^{\mathrm{y}} 10^{(\lambda)}$	${ }^{2} 10^{(\lambda)}$
411	0.095041	0.009816	0.437970	0.17509	0.01808	0.80683
412	0.105836	0.010918	0.489220	0.17465	0.01802	0.80733
413	0.117066	0.012058	0.542900	0.17420	0.01794	0.80786
414	0.128682	0013237	0.598810	0.17372	0.01787	0.80841
415	0.140638	0.014456	0.656760	0.17323	0.01781	0.80896
416	0.152893	0.015717	0.716580	0.17272	0.01776	0.80952
417	0.165416	0.017025	0.778120	0.17221	0.01772	0.81007
418	0.178191	0.018399	0.841310	0.17168	0.01773	0.81059
419	0.191214	0.019848	0.906110	0.17116	0.01777	0.81107
420	0.204492	0.021391	0.972542	0.17063	0.01785	0.81152
421	0.217650	0.022992	1.03890	0.17010	0.01797	0.81193
422	0.230267	0.024598	1.10310	0.16957	0.01811	0.81232
423	0.242311	0.026213	1.16510	0.16902	0.01828	0.81270
424	0.253793	0.027841	1.22490	0.16846	0.01848	0.81306
425	0.264737	0.029497	1.28250	0.16790	0.01871	0.81339
426	0.275195	0.031195	1.33820	0.16733	0.01897	0.81370
427	0.285301	0.032927	1.39260	0.16676	0.01925	0.81399
428	0.295143	0.034738	1.44610	0.16619	0.01956	0.81425
429	0.304869	0.036654	1.49940	0.16561	0.01991	0.81448
430	0.314679	0.038676	1.55348	0.16503	0.02028	0.81469
431	0.324355	0.040792	1.60720	0.16445	0.02068	0.81487
432	0.333570	0.042946	1.65890	0.16388	0.02110	0.81502
433	0.342243	0.045114	1.70820	0.16332	0.02153	0.81515
434	0.350312	0.047333	1.75480	0.16275	0.02199	0.81526
435	0.357719	0.049602	1.79850	0.16217	0.02249	0.81534
436	0.364482	0.051934	1.83920	0.16159	0.02302	0.81539
437	0.370493	0.054337	1.87660	0.16098	0.02361	0.81541
438	0.375727	0.056822	1.91050	0.16036	0.02425	0.81539
439	0.380158	0.059399	1.94080	0.15971	0.02495	0.81534
440	0.383734	0.062077	1.96728	0.15902	0.02573	0.81525
441	0.386327	0.064737	1.98910	0.15832	0.02653	0.81515
442	0.387858	0.067285	2.00570	0.15761	0.02734	0.81505
443	0.388396	0.069764	2.01740	0.15689	0.02818	0.81493
444	0.387978	0.072218	2.02440	0.15615	0.02907	0.81478
445	0.386726	0.074704	2.02730	0.15539	0.03002	0.81459
446	0.384696	0.077272	2.02640	0.15460	0.03105	0.81435
447	0.382006	0.079979	2.02230	0.15377	0.03219	0.81404
448	0.378709	0.082874	2.01530	0.15290	0.03346	0.81364
449	0.374915	0.086000	2.00600	0.15198	0.03486	0.81316
450	0.370702	0.089456	1.99480	0.15100	0.03644	0.81256
451	0.366089	0.092947	1.98140	0.15001	0.03809	0.81190
452	0.361045	0.096275	1.96530	0.14903	0.03974	0.81123
453	0.355518	0.099535	1.94640	0.14804	0.04145	0.81051
454	0.349486	0.102829	1.92480	0.14702	0.04326	0.80972
455	0.342957	0.106256	1.90070	0.14594	0.04522	0.80884
456	0.335893	0.109901	1.87410	0.14479	0.04737	0.80784
457	0.328284	0.113835	1.84510	0.14353	0.04977	0.80670
458	0.320150	0.118167	1.81390	0.14215	0.05247	0.80538
459	0.311475	0.122932	1.78060	0.14062	0.05550	0.80388
460	0.302273	0.128201	1.74537	0.13892	0.05892	0.80216

160
TABLE 2.2 (continued)

$\underset{(\mathrm{nm})}{\lambda}$	SPECTRAL TRISTIMULUS VALUES			CHROMATICITY COORDINATES		
	$\overline{\mathrm{x}}_{10}{ }^{(\lambda)}$	$\bar{y}_{10}{ }^{(\lambda)}$	$\vec{z}_{10}{ }^{(\lambda)}$	${ }^{x} 10^{(\lambda)}$	$y_{10}{ }^{(\lambda)}$	${ }^{2} 10{ }^{(\lambda)}$
461	0.292858	0.133457	1.70910	0.13714	0.06250	0.80036
462	0.283502	0.138323	1.67230	0.13538	0.06605	0.79857
463	0.274044	0.143042	1.63470	0.13356	0.06972	0.79672
464	0.264263	0.147787	1.59560	0.13163	0.07361	0.79476
465	0.254085	0.152761	1.55490	0.12952	0.07787	0.79261
466	0.243392	0.158102	1.51220	0.12718	0.08262	0.79020
467	0.232187	0.163941	1.46730	0.12460	0.08798	0.78742
468	0.220488	0.170362	1.41990	0.12177	0.09408	0.78415
469	0.208198	0.177425	1.37000	0.11859	0.10106	0.78035
470	0.195618	0.185190	1.31756	0.11518	0.10904	0.77578
471	0.183034	0.193025	1.26240	0.11171	0.11781	0.77048
472	0.170222	0.200313	1.20500	0.10804	0.12714	0.76482
473	0.157348	0.207156	1.14660	0.10413	0.13709	0.75878
474	0.144650	0.213644	1.08800	0.10001	0.14772	0.75227
475	0.132349	0.219940	1.03020	0.09573	0.15909	0.74518
476	0.120584	0.226170	0.973830	0.09131	0.17127	0.73742
477	0.109456	0.232467	0.919430	0.08678	0.18430	0.72892
478	0.099042	0.239025	0.867460	0.08216	0.19827	0.71957
479	0.089388	0.245997	0.818280	0.07748	0.21323	0.70929
480	0.080507	0.253589	0.772125	0.07278	0.22924	0.69798
481	0.072034	0.261876	0.728290	0.06782	0.24654	0.68564
482	0.063710	0.270643	0.686040	0.06244	0.26523	0.67233
483	0.055694	0.279645	0.645530	0.05678	0.28510	0.65812
484	0.048117	0.288694	0.606850	0.05099	0.30593	0.643 O8
485	0.041072	0.297665	0.570060	0.04519	0.32754	0.62727
486	0.034642	0.306469	0.535220	0.03953	0.34972	0.61075
487	0.028896	0.315035	0.502340	0.03415	0.37226	0.59359
488	0.023876	0.323335	0.471400	0.02917	0.39498	0.57585
489	0.019628	0.331366	0.442390	0.02474	0.41766	0.55760
490	0.016172	0.339133	0.415254	0.02099	0.44011	0.53890
491	0.013300	0.347860	0.390024	0.01771	0.46308	0.51921
492	0.010759	0.358326	0.366399	0.01463	0.48720	0.49817
493	0.008542	0.370001	0.344015	0.01182	0.51207	0.47611
494	0.006661	0.382464	0.322689	0.00936	0.53731	0.45313
495	0.005132	0.395379	0.302356	0.00730	0.56252	0.43018
496	0.003982	0.408482	0.283036	0.00573	0.58732	0.40695
497	0.003239	0.421588	0.264816	0.00470	0.61131	0.38399
498	0.002934	0.434619	0.247848	0.00428	0.63411	0.36161
499	0.003114	0.447601	0.232318	0.00456	0.65531	0.34013
500	0.003816	0.460777	0.218502	0.00559	0.67454	0.31987
501	0.005095	0.474340	0.205851	0.00743	0.69218	0.30039
502	0.006936	0.488200	0.193596	0.01007	0.70884	0.28109
503	0.009299	0.502340	0.181736	0.01341	0.72449	0.26210
504	0.012147	0.516740	0.170281	0.01737	0.73908	0.24355
505	0.015444	0.531360	0.159249	0.02187	0.75258	0.22555
506	0.019156	0.546190	0.148673	0.02683	0.76495	0.20822
507	0.023250	0.561180	0.138609	0.03216	0.77614	0.19170
508	0.027690	0.576290	0.129096	0.03777	0.78613	0.17610
509	0.032444	0.591500	0.120215	0.04360	0.79486	0.16154
510	0.037465	0.606741	0.112044	0.04954	0.80230	0.14816

161
TABLE 2.2 (continued)

$\underset{(n \mathrm{~m})}{\lambda}$	SPECTRAL TRISTIMULUS VALUES			CHROMATICITY COORDINATES		
	$\overline{\mathrm{x}}_{10}{ }^{(\lambda)}$	$\overline{\mathbf{y}}_{10}{ }^{(\lambda)}$	${ }^{1} 10{ }^{(\lambda)}$	$\mathrm{x}_{10}{ }^{(\lambda)}$	$\mathrm{y}_{10}{ }^{(\lambda)}$	${ }^{2} 10^{(\lambda)}$
511	0.042956	0.622150	0.104710	0.05580	0.80818	0.13602
512	0.049114	0.637830	0.098196	0.06255	0.81238	0.12507
513	0.055920	0.653710	0.092361	0.06973	0.81511	0.11516
514	0.063349	0.669680	0.087088	0.07724	0.81657	0.10619
515	0.071358	0.685660	0.082248	0.08502	0.81698	0.09800
516	0.079901	0.701550	0.077744	0.09300	0.81652	0.09048
517	0.088909	0.717230	0.073456	0.10108	0.81541	0.08351
518	0.098293	0.732570	0.069268	0.10920	0.81385	0.07695
519	0.107949	0.747460	0.065060	0.11728	0.81204	0.07068
520	0.117749	0.761757	0.060709	0.12524	0.81019	0.06457
521	0.127839	0.775340	0.056457	0.13322	0.80795	0.05883
522	0.138450	0.788220	0.052609	0.14138	0.80490	0.05372
523	0.149516	0.800460	0.049122	0.14965	0.80118	0.04917
524	0.161041	0.812140	0.045954	0.15802	0.79689	0.04509
525	0.172953	0.823330	0.043050	0.16641	0.79217	0.04142
526	0.185209	0.834120	0.040368	0.17478	0.78713	0.03809
527	0.197755	0.844600	0.037839	0.18307	0.78190	0.03503
528	0.210538	0.854870	0.035384	0.19126	0.77660	0.03214
529	0.223460	0.865040	0.032949	0.19926	0.77136	0.02938
530	0.236491	0.875211	0.030451	0.20706	0.76628	0.02666
531	0.249633	0.885370	0.028029	0.21464	0.76126	0.02410
532	0.262972	0.895370	0.025862	0.22207	0.75609	0.02184
533	0.276515	0.905150	0.023920	0.22936	0.75080	0.01984
534	0.290269	0.914650	0.022174	0.23655	0.74538	0.01807
535	0.304213	0.923810	0.020584	0.24364	0.73987	0.01649
536	0.318361	0.932550	0.019127	0.25067	0.73427	0.01506
537	0.332705	0.940810	0.017740	0.25766	0.72860	0.01374
538	0.347232	0.948520	0.016403	0.26463	0.72287	0.01250
539	0.361926	0.955600	0.015064	0.27160	0.71710	0.01130
540	0.376772	0.961988	0.013676	0.27859	0.71130	0.01011
541	0.391683	0.967540	0.012308	0.28558	0.70545	0.00897
542	0.406594	0.972230	0.011056	0.29254	0.699 S1	0.00795
543	0.421539	0.976170	0.009915	0.29947	0.69349	0.00704
544	0.436517	0.979460	0.008872	0.30636	0.68741	0.00623
545	0.451584	0.982200	0.007918	0.31323	0.68128	0.00549
546	0.466782	0.984520	0.007030	0.32008	0.67510	0.00482
547	0.482147	0.986520	0.006223	0.32690	0.66888	0.00422
548	0.497738	0.988320	0.005453	0.33371	0.66263	0.00366
549	0.513606	0.990020	0.004714	0.34051	0.65636	0.00313
550	0.529826	0.991761	0.003988	0.34730	0.65009	0.00261
551	0.546440	0.993530	0.003289	0.35408	0.64379	0.00213
552	0.563426	0.995230	0.002646	0.36087	0.63744	0.06169
553	0.580726	0.996770	0.002063	0.36765	0.63104	0.00131
554	0.598290	0.998090	0.001533	0.37442	0.62462	0.00096
555	0.616053	0.999110	0.001091	0.38116	0.61816	0.00068
556	0.633948	0.999770	0.000711	0.38787	0.61169	0.00044
557	0.651901	1.000000	0.000407	0.39454	0.60521	0.00025
558	0.669824	0.999710	0.000184	0.40116	0.59873	0.00011
559	0.687632	0.998850	0.000047	0.40772	0.59225	0.00003
560	0.705224	0.997340	0.000000	0.41421	0.58579	0.00000

162
TABLE 2.2 (continued)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline $$
\begin{gathered}
\lambda \\
(\mathrm{nm})
\end{gathered}
$$ \& $\bar{x}_{10}{ }^{(\lambda)}$ \& TRAL TRIS

$\bar{y}_{10}{ }^{(\alpha)}$ \& Values

$$
\Sigma_{10} 0^{(\lambda)}
$$ \& CHROM

$\mathrm{x}_{10}(\lambda)$
0.420 \& TICITY COO

$y_{10} 0^{(\lambda)}$
$0^{519} 30$ \& RINATES

$$
z_{10^{(\lambda)}}
$$

\hline 561 \& 0.722773 \& 0.995260 \& 0.000000 \& 0.42070 \& 0.57930 \& 0.00000

\hline 562 \& 0.740483 \& 0.992740 \& \& 0.42723 \& 0.57277 \& 0.00000

\hline 563 \& 0.758273 \& 0.989750 \& \& 0.43379 \& 0.56621 \&

\hline 564 \& 0.776083 \& 0.986300 \& \& 0.44036 \& 0.55964 \&

\hline 565 \& 0.793832 \& 0.982380 \& \& 0.44692 \& 0.55308 \&

\hline 566 \& 0.811436 \& 0.977980 \& \& 0.45346 \& 0.54654 \&

\hline 567 \& 0.828822 \& 0.973110 \& \& 0.4599 \& 0.54004 \&

\hline 568 \& 0.845879 \& 0.967740 \& \& 0.46640 \& 0.53360 \&

\hline 569 \& 0.862525 \& 0.961890 \& \& 0.47277 \& 0.52723 \&

\hline 570 \& 0.878655 \& 0.955552 \& \& 0.47904 \& 0.52096 \&

\hline 571 \& 0.894208 \& 0.948601 \& \& 0.48524 \& 0.51476 \&

\hline 572 \& 0.909206 \& 0.940981 \& \& 0.49141 \& 0.50859 \&

\hline 573 \& 0.923672 \& 0.932798 \& \& 0.49754 \& 0.50246 \&

\hline 574 \& 0.937638 \& 0.924158 \& \& 0.50362 \& 0.49638 \&

\hline 575 \& 0.951162 \& 0.915175 \& \& 0.50964 \& 0.49036 \&

\hline 576 \& 0.964283 \& 0.905954 \& \& 0.51559 \& 0.48441 \&

\hline 577 \& 0.977068 \& 0.896608 \& \& 0.52147 \& 0.47853 \&

\hline 578 \& 0.989590 \& 0.887249 \& \& 0.52726 \& 0.47274 \&

\hline 579 \& 1.00191 \& 0.877986 \& \& 0.53296 \& 0.46704 \&

\hline 580 \& 1.01416 \& 0.868934 \& \& 0.53856 \& 0.46144 \&

\hline 581 \& 1.02650 \& 0.860164 \& \& 0.54408 \& 0.45592 \&

\hline 582 \& 1.03880 \& 0.851519 \& \& 0.54954 \& 0.45046 \&

\hline 583 \& 1.05100 \& 0.842963 \& \& 0.55492 \& 0.44508 \&

\hline 584 \& 1.06290 \& 0.834393 \& \& 0.56022 \& 0.43978 \&

\hline 585 \& 1.07430 \& 0.825623 \& \& 0.56544 \& 0.43456 \&

\hline 586 \& 1.08520 \& 0.816764 \& \& 0.57057 \& 042943 \&

\hline 587 \& 1.09520 \& 0.807544 \& \& 0.57559 \& 0.42441 \&

\hline 588 \& 1.10420 \& 0.797947 \& \& 0.58050 \& 0.41950 \&

\hline 589 \& 1.11200 \& 0.787893 \& \& 0.58530 \& 0.41470 \&

\hline 590 \& 1.11852 \& 0.777405 \& \& 0.58996 \& 0.41004 \&

\hline 591 \& 1.12380 \& 0.766490 \& \& 0.59451 \& 0.40549 \&

\hline 592 \& 1.12800 \& 0.755309 \& \& 0.59895 \& 0.40105 \&

\hline 593 \& 1.13110 \& 0.743845 \& \& 0.60327 \& 0.39673 \&

\hline 594 \& 1.13320 \& 0.732190 \& \& 0.60749 \& 0.39251 \&

\hline 595 \& 1.13430 \& 0.720353 \& \& 0.61160 \& 0.38840 \&

\hline 59\% \& 1.13430 \& 0.708281 \& \& 0.61560 \& 0.38440 \&

\hline 597 \& 1.13330 \& 0.696 055 \& \& 0.61951 \& 0.38049 \&

\hline 598 \& 1.13120 \& 0.683621 \& \& 0.62331 \& 0.37669 \&

\hline 599 \& 1.12810 \& 0.671048 \& \& 0.62702 \& 0.37298 \&

\hline 600 \& 1.12399 \& 0.658341 \& \& 0.63063 \& 0.36937 \&

\hline 601 \& 1.11890 \& 0.645545 \& \& 0.63414 \& 0.36586 \&

\hline 602 \& 1.11290 \& 0.632718 \& \& 0.63754 \& 0.36246 \&

\hline 603 \& 1.10590 \& 0.619815 \& \& 0.64084 \& 0.35916 \&

\hline 604 \& 1.09800 \& 0.606887 \& \& 0.64403 \& 0.35597 \&

\hline 605 \& 1.08910 \& 0.593878 \& \& 0.64713 \& 0.35287 \&

\hline 606 \& 1.07920 \& 0.580781 \& \& 0.65013 \& 0.34987 \&

\hline 607 \& 1.06840 \& 0.567653 \& \& 0.65304 \& 0.34696 \&

\hline 608 \& 1.05670 \& 0.554490 \& \& 0.65585 \& 0.34415 \&

\hline 609 \& 1.04400 \& 0.541228 \& \& 0.65858 \& 0.34142 \&

\hline 610 \& 1.03048 \& 0.527963 \& \& 0.66122 \& 0.33878 \&

\hline
\end{tabular}

TABLE 2.2 (continued)

$\begin{gathered} \lambda \\ (\mathrm{nm}) \end{gathered}$	SPECTRAL TRISTIMULUS values			CHROMATICITY COORDINATES -)		
	$\bar{x}_{10}{ }^{(\lambda)}$	$\bar{y}_{10}(\lambda)$	${ }_{1}{ }_{10}(\mathrm{x})$	$\mathrm{x}_{10}{ }^{(\lambda)}$	$y_{10}(\mathrm{~d})$	${ }_{10}{ }^{(\lambda)}$
611	1.01600	0.514634	0.000000	0.66378	0.33622	0.00000
612	1.00080	0.501363		0.66624	0.33376	
613	0.984790	0.488124		0.66860	0.33140	
614	0.968080	0.474935		0.67087	0.32913	
615	0.950740	0.461834		0.67306	0.32694	
616	0.932800	0.448823		0.67515	0.32485	
617	0.914340	0.435917		0.67716	0.32284	
618	0.895390	0.423153		0.67908	0.32092	
619	0.876030	0.410526		0.68091	0.31909	
620	0.856297	0.398057		0.68266	0.31734	
621	0.836350	0.385835		0.68431	0.31569	
622	0.816290	0.373951		0.68582	0.31418	
623	0.796050	0.362311		0.68722	0.31278	
624	0.775610	0.350863		0.68853	0.31147	
625	0.754930	0.339554		0.68976	0.31024	
626	0.733990	0.328309		0.69094	0.30906	
627	0.712780	0.317118		0.69209	0.30791	
628	0.691290	0.305936		0.69321	0.30679	
629	0.669520	0.294737		0.69434	0.30566	
630	0.647467	0.283493		0.69548	0.30452	
631	0.625110	0.272222		0.69663	0.30337	
632	0.602520	0.260990		0.69776	0.30224	
633	0.579890	0.249877		0.69886	0.30114	
634	0.557370	0.238946		0.69994	0.30006	
635	0.535110	0.228254		0.70099	0.29901	
636	0.513240	0.217853		0.70202	0.29798	
637	0.491860	0.207780		0.70302	0.29698	
638	0.471080	0.198072		0.70400	0.29600	
639	0.450960	0.188748		0.70495	0.29505	
640	0.431567	0.179828		0.70587	0.29413	
641	0.412870	0.171285		0.70678		
642	0.394750	0.163059		0.70768	0.29232	
643	0.377210	0.155 151		0.70856	0.29144	
644	0.360190	0.147535		0.70942	0.29058	
645	0.343690	0.140211		0.71025	0.28975	
646	0.327690	0.133170		0.71104	0.28896	
647	0.312170	0.126400		0.71179	0.28821	
648	0.297110	0.119892		0.71249	0.28751	
649	0.282500	0.113640		0.71313	0.28687	
650	0.268329	0.107633		0.71371	0.28629	
651	0.254590	0.101870		0.71422 0.714	0.28578	
652	0.241300	0.096347		0.71465	0.28535	
653	0.228480	0.091063		0.71502	0.28498	
654	0.216140	0.086010		0.71534	0.28466	
655	0.204300	0.081187		0.71562	0.28438	
656 657	0.192950 0.182110	$\begin{array}{lll}0.076 & 583 \\ 0.072 & 198\end{array}$				
657 658	0.182110 0.171 170	$\begin{array}{lll}0.072 & 198 \\ 0.068 & 024\end{array}$		0.71610 0.71632	0.28390 0.28368	
659	0.161920	0.064052		0.716 55	0.28345	
660	0.152568	0.060281		0.71679	0.28321	

164
TABLE 2.2 (continued)

TABLE 2.2 (continued)

166
TABLE 2.2 (continued)

167
TABLE 2.2 (continued)

$$
\begin{array}{lllll}
\Sigma \bar{x}_{10}(\lambda)=116.648 & 519 & 508 & 908 \\
\Sigma \bar{y}_{10}(\lambda) & =116.661 & 877 & 102 & 312 \\
\Sigma \bar{z}_{10} 0^{(\lambda)}=116.673 & 980 & 514 & 647
\end{array}
$$

168
TABLE 2.3.1

$\underset{(\mathrm{nm})}{\lambda}$	SPECTRAL TRIStimulus values			CHROMATICITY COORDINATES		
	$\overline{\mathrm{x}}(\mathrm{\lambda})$	$\overline{\mathrm{y}}$ (A$)$	$\underline{\mathbf{i}}(\lambda)$	$\mathrm{x}(\mathrm{\lambda})$	$y(\lambda)$	z(1)
380	0.0014	0.0000	0.0065	0.1741	0.0050	0.8209
385	0.0022	0.0001	0.0105	0.1740	0.0050	0.8210
390	0.0042	0.0001	0.0201	0.1738	0.0049	0.8213
395	0.0076	0.0002	0.0362	0.1736	0.0049	0.8215
400	0.0143	0.0004	0.0679	0.1733	0.0048	0.8219
405	0.0232	0.0006	0.1102	0.1730	0.0048	0.8222
410	0.0435	0.0012	0.2074	0.1726	0.0048	0.8226
415	0.0776	0.0022	0.3713	0.1721	0.0048	0.8231
420	0.1344	0.0040	0.6456	0.1714	0.0051	0.8235
425	0.2148	0.0073	1.0391	0.1703	0.0058	0.8239
430	0.2839	0.0116	1.3856	0.1689	0.0069	0.8242
435	0.3285	0.0168	1.6230	0.1669	0.0086	0.8245
440	0.3483	0.0230	1.7471	0.1644	0.0109	0.8247
445	0.3481	0.0298	1.7826	0.1611	0.0138	0.8251
450	0.3362	0.0380	1.7721	0.1566	0.0177	0.8257
455	0.3187	0.0480	1.7441	0.1510	0.0227	0.8263
460	0.2908	0.0600	1.6692	0.1440	0.0297	0.8263
465	0.2511	0.0739	1.5281	0.1355	0.0399	0.8246
470	0.1954	0.0910	1.2876	0.1241	0.0578	0.8181
475	0.1421	0.1126	1.0419	0.1096	0.0868	0.8036
480	0.0956	0.1390	0.8130	0.0913	0.1327	0.7760
485	0.0580	0.1693	0.6162	0.0687	0.2007	0.7306
490	0.0320	0.2080	0.4652	0.0454	0.2950	0.6596
495	0.0147	0.2586	0.3533	0.0235	0.4127	0.5638
500	0.0049	0.3230	0.2720	0.0082	0.5384	0.4534
505	0.0024	0.4073	0.2123	0.0039	0.6548	0.3413
510	0.0093	0.5030	0.1582	0.0139	0.7502	0.2359
515	0.0291	0.6082	0.1117	0.0389	0.8120	0.1491
520	0.0633	0.7100	0.0782	0.0743	0.8338	0.0919
525	0.1096	0.7932	0.0573	0.1142	0.8262	0.05\%
530	0.1655	0.8620	0.0422	0.1547	0.8059	0.0394
535	0.2257	0.9149	0.0298	0.1929	0.7816	0.0255
540	0.2904	0.9540	0.0203	0.2296	0.7543	0.0161
545	0.3597	0.9803	0.0134	0.2658	0.7243	0.0099
550	0.4334	0.9950	0.0087	0.3016	0.6923	0.0061
555	0.5121	1.0000	0.0057	0.3373	0.6589	0.0038
560	0.5945	0.9950	0.0039	0.3731	0.6245	0.0024
565	0.6784	0.9786	0.0027	0.4087	0.5896	0.0017
570	0.7621	0.9520	0.0021	0.4441	0.5547	0.0012
575	0.8425	0.9154	0.0018	0.4788	0.5202	0.0010
580	0.9163	0.8700	0.0017	0.5125	0.4866	0.0009
585	0.9786	0.8163	0.0014	0.5448	0.4544	0.0008
590	1.0263	0.7570	0.0011	0.5752	0.4242	0.0006
595	1.0567	0.6949	0,0010	0.6029	0.3965	0.0006
600	1.0622	0.6310	0.0008	0.6270	0.3725	0.0005
605	1.0456	0.5668	0.0006	0.6482	0.3514	0.0004
610	1.0026	0.5030	0.0003	0.6658	0.3340	0.0002
615	0.9384	0.4412	0.0002	0.6801	0.3197	0.0002
620	0.8544	0.3810	0.0002	0.6915	0.3083	0.0002

169
TABLE 2.3 .1 (contiaued)

Summation at 5 nm intervals:

```
\Sigma\overline{x}(\lambda)=21.3714
\Sigma\overline{y}(\lambda)=21.3711
\Sigma\overline{z}(\lambda)=21.3715
```

Summation at 10 nm intervals:
$\Sigma \bar{x}(\lambda)=10.6836$
$\Sigma \bar{y}(\lambda)=10.6856$
$\Sigma \bar{z}(\lambda)=10.6770$

170
TABLE 2.3.2

$\underset{(\mathrm{nm})}{\lambda}$	SPECTRAL TRISTIMULUS VALUES			CHROMATICITY COORDINATES		
	$\bar{x}_{10}{ }^{(\lambda)}$	$\overline{\mathrm{y}}_{10}{ }^{(\lambda)}$	$\bar{i}_{10} 0^{(\lambda)}$	$\mathrm{x}_{10}\left({ }^{\text {() }}\right.$	$y_{10}{ }^{(1)}$	${ }^{2} 10{ }^{(\lambda)}$
380	0.0002	0.0000	0.0007	0.1813	0.0197	0.7990
385	0.0007	0.0001	0.0029	0.1809	0.0195	0.7996
390	0.0024	0.0003	0.0105	0.1803	0.0194	0.8003
395	0.0072	0.0008	0.0323	0.1795	0.0190	0.8015
400	0.0191	0.0020	0.0860	0.1784	0.0187	0.8029
405	0.0434	0.0045	0.1971	0.1771	0.0184	0.8045
410	0.0847	0.0088	0.3894	0.1755	0.0181	0.8064
415	0.1406	0.0145	0.6568	0.1732	0.0178	0.8090
420	0.2045	0.0214	0.9725	0.1706	0.0179	0.8115
425	0.2647	0.0295	1.2825	0.1679	0.0187	0.8134
430	0.3147	0.0387	1.5535	0.1650	0.0203	0.8147
435	0.3577	0.04\%	1.7985	0.1622	0.0225	0.8153
440	0.3837	0.0621	1.9673	0.1590	0.0257	0.8153
445	0.3867	0.0747	2.0273	0.1554	0.0300	0.8146
450	0.3707	0.0895	1.9948	0.1510	0.0364	0.8126
455	0.3430	0.1063	1.9007	0.1459	0.0452	0.8088
460	0.3023	0.1282	1.7454	0.1389	0.0589	0.8022
465	0.2541	0.1528	1.5549	0.1295	0.0779	0.7926
470	0.1956	0.1852	1.3176	0.1152	0.1090	0.7758
475	0.1323	0.2199	1.0302	0.0957	0.1591	0.7452
480	0.0805	0.2536	0.7721	0.0728	0.2292	0.6980
485	0.0411	0.2977	0.5701	0.0452	0.3275	0.6273
490	0.0162	0.3391	0.4153	0.0210	0.4401	0.5389
495	0.0051	0.3954	0.3024	0.0073	0.5625	0.4302
500	0.0038	0.4608	0.2185	0.0056	0.6745	0.3199
505	0.0154	0.5314	0.1592	0.0219	0.7526	0.2255
510	0.0375	0.6007	0.1120	0.0495	0.8023	0.1482
515	0.0714	0.6857	0.0822	0.0850	0.8170	0.0980
520	0.1177	0.7618	0.0607	0.1252	0.8102	0.0646
525	0.1730	0.8233	0.0431	0.1664	0.7922	0.0414
530	0.2365	0.8752	0.0305	0.2071	0.7663	0.0267
535	0.3042	0.9238	0.0206	0.2436	0.7399	0.0165
540	0.3768	0.9620	0.0137	0.2786	0.7113	0.0101
545	0.4516	0.9822	0.0079	0.3132	0.6813	0.0055
550	0.5298	0.9918	0.0040	0.3473	0.6501	0.0026
555	0.6161	0.9991	0.0011	0.3812	0.6182	0.0007
560	0.7052	0.9973	0.0000	0.4142	0.5858	0.0000
565	0.7938	0.9824	0.0000	0.4469	0.5531	0.0000
570	0.8787	0.9556	0.0000	0.4790	0.5210	0.0000
575	0.9512	0.9152	0.0000	0.5096	0.4904	0.0000
580	1.0142	0.8689	0.0000	0.5386	0.4614	0.0000
585	1.0743	0.8256	0.0000	0.5654	0.4346	0.0000
590	1.1185	0.7774	0.0000	0.5900	0.4100	0.0000
595	1.1343	0.7204	0.0000	0.6116	0.3884	0.0000
600	1.1240	0.6583	0.0000	0.6306	0.3694	0.0000
605	1.0891	0.5939	0.0000	0.6471	0.3529	0.0000
610	1.0305	0.5280	0.0000	0.6612	0.3388	0.0000
615	0.9507	0.4618	0.0000	0.6731	0.3269	0.0000
620	0.8563	0.3981	0.0000	0.6827	0.3173	0.0000

TABLE 2.3.2 (continsed)

$\underset{(n \mathrm{~m})}{\lambda}$	SPECTRAL TRISTIMULUS VAlUES			CHROMATICITY COORDINATES		
	$\overline{\mathbf{x}}_{10}{ }^{(\lambda)}$	$\bar{y}_{10}{ }^{\text {(}}$)	$\bar{i}_{10}{ }^{(\lambda)}$	${ }^{\mathrm{x}} 10{ }^{(\lambda)}$	$y_{10}{ }^{(\lambda)}$	${ }^{2} 10^{(\lambda)}$
625	0.7549	0.3396	0.0000	0.6898	0.3102	0.0000
630	0.6475	0.2835	0.0000	0.6955	0.3045	0.0000
635	0.5351	0.2283	0.0000	0.7010	0.2990	0.0000
640	0.4316	0.1798	0.0000	0.7059	0.2941	0.0000
645	0.3437	0.1402	0.0000	0.7103	0.2898	0.0000
650	0.2683	0.1076	0.0000	0.7137	0.2863	0.0000
655	0.2043	0.0812	0.0000	0.7156	0.2844	0.0000
660	0.1526	0.0603	0.0000	0.7168	0.2832	0.0000
665	0.1122	0.0441	0.0000	0.7179	0.2821	0.0000
670	0.0813	0.0318	0.0000	0.7187	0.2813	0.0000
675	0.0579	0.0226	0.0000	0.7193	0.2807	0.0000
680	0.0409	0.0159	0.0000	0.7198	0.2802	0.0000
685	0.0286	0.0111	0.0000	0.7200	0.2800	0.0000
690	0.0199	0.0077	0.0000	0.7202	0.2798	0.0000
695	0.0138	0.0054	0.0000	0.7203	0.2797	0.0000
700	0.0096	0.0037	0.0000	0.7204	0.2796	0.0000
705	0.0066	0.0026	0.0000	0.7203	0.2797	0.0000
710	0.0046	0.0018	0.0000	0.7202	0.2798	0.0000
715	0.0031	0.0012	0.0000	0.7201	0.2799	0.0000
720	0.0022	0.0008	0.0000	0.7199	0.2801	0.0000
725	0.0015	0.0006	0.0000	0.7197	0.2803	0.0000
730	0.0010	0.0004	0.0000	0.7195	0.2806	0.0000
735	0.0007	0.0003	0.0000	0.7192	0.2808	0.0000
740	0.0005	0.0002	0.0000	0.7189	0.2811	0.0000
745	0.0004	0.0001	0.0000	0.7186	0.2814	0.0000
750	0.0003	0.0001	0.0000	0.7183	0.2817	0.0000
755	0.0002	0.0001	0.0000	0.7180	0.2820	0.0000
760	0.0001	0.0000	0.0000	0.7176	0.2824	0.0000
765	0.0001	0.0000	0.0000	0.7172	0.2828	0.0000
770	0.0001	0.0000	0.0000	0.7169	0.2831	0.0000
775	0.0000	0.0000	0.0000	0.7165	0.2835	0.0000
780	0.0000	0.0000	0.0000	0.7161	0.2839	0.0000

Summation at 5 nm intervals:
Summation at 10 nm intervals:

$$
\begin{aligned}
& \Sigma \bar{x}_{10}(\lambda)=23.3294 \\
& \Sigma \bar{y}_{10}(\lambda)=23.3324 \\
& \Sigma \bar{x}_{10}(\lambda)=23.3343
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma \bar{x}_{10}(\lambda)=11.6646 \\
& \Sigma \bar{y}_{10}(\lambda)=11.6644 \\
& \Sigma \bar{z}_{10}(\lambda)=11.6645
\end{aligned}
$$

172

TABLE 2.3.3

$\begin{gathered} \lambda \\ (\mathrm{nm}) \end{gathered}$	SPECTRAL TRISTIMULUS VALUES			CHROMATICITY COORDINATES		
	$\bar{u}(\lambda)$	$\overline{\mathbf{v}}(\lambda)$	$\bar{w}(\lambda)$	$u(\lambda)$	$v(\lambda)$	$w(\lambda)$
380	0.0009	0.0000	0.0026	0.2569	0.0110	0.7322
385	0.0015	0.0001	0.0043	0.2567	0.0110	0.7323
390	0.0028	0.0001	0.0081	0.2564	0.0109	0.7327
395	0.0051	0.0002	0.0146	0.2560	0.0109	0.7331
400	0.0095	0.0004	0.0274	0.2558	0.0106	0.7336
405	0.0155	0.0006	0.0445	0.2553	0.0106	0.7342
410	0.0290	0.0012	0.0838	0.2545	0.0106	0.7349
415	0.0518	0.0022	0.1501	0.2536	0.0107	0.7357
420	0.0896	0.0040	0.2616	0.2522	0.0113	0.7365
425	0.1432	0.0073	0.4231	0.2496	0.0127	0.7376
430	0.1893	0.0116	0.5682	0.2461	0.0151	0.7388
435	0.2190	0.0168	0.6725	0.2411	0.0185	0.7404
440	0.2322	0.0230	0.7339	0.2348	0.0233	0.7420
445	0.2320	0.0298	0.7620	0.2266	0.0291	0.7442
450	0.2241	0.0380	0.7750	0.2161	0.0366	0.7472
455	0.2125	0.0480	0.7847	0.2033	0.0459	0.7508
460	0.1939	0.0600	0.7792	0.1877	0.0581	0.7543
465	0.1674	0.0739	0.7493	0.1690	0.0746	0.7564
470	0.1302	0.0910	0.6826	0.1441	0.1007	0.7552
475	0.0947	0.1126	0.6188	0.1147	0.1363	0.7490
480	0.0638	0.1390	0.5672	0.0828	0.1806	0.7366
485	0.0386	0.1693	0.5331	0.0521	0.2285	0.7194
490	0.0213	0.2080	0.5286	0.0282	0.2744	0.6974
495	0.0098	0.2586	0.5572	0.0119	0.3132	0.6749
500	0.0033	0.3230	0.6180	0.0035	0.3420	0.6545
505	0.0016	0.4073	0.7159	0.0014	0.3621	0.6365
510	0.0062	0.5030	0.8289	0.0046	0.3759	0.6195
515	0.0194	0.6082	0.9536	0.0123	0.3846	0.6031
520	0.0422	0.7100	1.0725	0.0231	0.3891	0.5878
525	0.0731	0.7932	1.1636	0.0360	0.3908	0.5732
530	0.1103	0.8620	1.2313	0.0501	0.3912	0.5588
535	0.1505	0.9149	1.2743	0.0643	0.3910	0.5447
540	0.1936	0.9540	1.2959	0.0792	0.3904	0.5304
545	0.2398	0.9803	1.2973	0.0953	0.3894	0.5153
550	0.2890	0.9950	1.2801	0.1127	0.3880	0.4993
555	0.3414	1.0000	1.2468	0.1319	0.3864	0.4817
560	0.3963	0.9950	1.1972	0.1531	0.3844	0.4625
565	0.4523	0.9786	1.1301	0.1766	0.3821	0.4413
570	0.5081	0.9520	1.0480	0.2026	0.3796	0.4179
575	0.5617	0.9154	0.9528	0.2312	0.3767	0.3921
580	0.6109	0.8700	0.8477	0.2623	0.3736	0.3640
585	0.6524	0.8163	0.7358	0.2959	0.3703	0.3338
590	0.6842	0.7570	0.6229	0.3315	0.3667	0.3018
595	0.7045	0.6949	0.5145	0.3681	0.3631	0.2688
600	0.7081	0.6310	0.4158	0.4035	0.3596	0.2369
605	0.6971	0.5668	0.3277	0.4380	0.3561	0.2059
610	0.6684	0.5030	0.2534	0.4691	0.3530	0.1778
615	0.6256	0.4412	0.1927	0.4967	0.3503	0.1530
620	0.5696	0.3810	0.1444	0.5202	0.3479	0.1318
625	0.5009	0.3210	0.1058	0.5399	0.3460	0.1141

173
TABLE 2.3.3 (continued)

Summation at 5 nm intervals:
$\Sigma \bar{u}(\lambda)=14.2480$
$\Sigma \bar{v}(\lambda)=21.3711$
$\Sigma \bar{w}(\lambda)=32.0568$

Summation at 10 nm intervals:
$\Sigma \bar{u}(\lambda)=7.1225$
$\Sigma \bar{v}(\lambda)=10.6856$
$\Sigma \bar{W}(\lambda)=16.0252$

174
TABLE 2.3.4

	SPECTRAL TRISTIMULUS Values			CHROMATICITY COORDINATES		
$\underset{(n \mathrm{~m})}{\lambda}$	$\bar{u}_{10}(\lambda)$	$\overline{\mathbf{v}}_{10}{ }^{(\lambda)}$	$\bar{w}_{10}{ }^{(\lambda)}$	${ }^{4} 0^{(2)}$	${ }_{10} 0^{(\lambda)}$	$w_{10}{ }^{(\lambda)}$
380	0.0001	0.0000	0.0003	0.2524	0.0411	0.7065
385	0.0004	0.0001	0.0012	0.2519	0.0408	0.7073
390	0.0016	0.0003	0.0044	0.2512	0.0404	0.7084
395	0.0048	0.0008	0.0137	0.2502	0.0398	0.7100
400	0.0127	0.0020	0.0365	0.2488	0.0391	0.7120
405	0.0289	0.0045	0.0836	0.2472	0.0385	0.7143
410	0.0565	0.0088	0.1654	0.2449	0.0380	0.7172
415	0.0938	0.0145	0.2797	0.2417	0.0373	0.7211
420	0.1363	0.0214	0.4161	0.2376	0.0373	0.7251
425	0.1765	0.0295	0.5531	0.2325	0.0389	0.7286
430	0.2098	0.0387	0.6774	0.2266	0.0418	0.7316
435	0.2385	0.0496	0.7948	0.2202	0.0458	0.7340
440	0.2558	0.0621	0.8849	0.2127	0.0516	0.7357
445	0.2578	0.0747	0.9323	0.2038	0.0591	0.7371
450	0.2471	0.0895	0.9462	0.1926	0.0697	0.7376
455	0.2286	0.1063	0.9383	0.1796	0.0835	0.7370
460	0.2015	0.1282	0.9138	0.1620	0.1031	0.7349
465	0.1694	0.1528	0.8795	0.1410	0.1271	0.7319
470	0.1304	0.1852	0.8388	0.1130	0.1604	0.7266
475	0.0882	0.2199	0.7788	0.0812	0.2023	0.7165
480	0.0537	0.2536	0.7262	0.0519	0.2454	0.7027
485	0.0274	0.2977	0.7110	0.0264	0.2873	0.6863
490	0.0108	0.3391	0.7082	0.0102	0.3205	0.6693
495	0.0034	0.3954	0.7417	0.0030	0.3467	0.6503
500	0.0025	0.4608	0.7985	0.0020	0.3652	0.6328
505	0.0103	0.5314	0.8689	0.0073	0.3767	0.6160
510	0.0250	0.6067	0.9474	0.0158	0.3842	0.6000
515	0.0476	0.6857	1.0339	0.0269	0.3880	0.5851
520	0.0785	0.7618	1.1141	0.0402	0.3898	0.5701
525	0.1153	0.8233	1.1700	0.0547	0.3904	0.5549
530	0.1577	0.8752	1.2098	0.0703	0.3903	0.5394
535	0.2028	0.9238	1.2439	0.0856	0.3897	0.5247
540	0.2512	0.9620	1.2614	0.1015	0.3887	0.5098
545	0.3011	0.9822	1.2515	0.1188	0.3875	0.4937
550	0.3532	0.9918	1.2247	0.1375	0.3859	0.4766
555	0.4107	0.9991	1.1912	0.1579	0.3841	0.4580
560	0.4701	0.9973	1.1434	0.1801	0.3820	0.4379
565	0.5292	0.9824	1.0767	0.2045	0.3796	0.4160
570	0.5858	0.9556	0.9940	0.2310	0.3769	0.3921
575	0.6341	0.9152	0.8972	0.2592	0.3741	0.3667
580	0.6761	0.8689	0.7963	0.2888	0.3711	0.3401
585	0.7162	0.8256	0.7013	0.3193	0.3681	0.3126
590	0.7457	0.7774	0.6068	0.3501	0.3650	0.2849
595	0.7562	0.7204	0.5134	0.3800	0.3620	0.2580
600	0.7493	0.6583	0.4255	0.4088	0.3591	0.2321
605	0.7261	0.5939	0.3463	0.4358	0.3564	0.2078
610	0.6870	0.5280	0.2767	0.4606	0.3539	0.1855
615	0.6338	0.4618	0.2174	0.4827	0.3517	0.1656
620	0.5709	0.3981	0.1689	0.5017	0.3498	0.1485
625	0.5033	0.33\%	0.1319	0.5163	0.3484	0.1353

TABLE 2.34 (continued)

$\begin{aligned} & \lambda \\ & (\mathrm{nm}) \end{aligned}$	SPFCTRAL tristimulus values			CHROMATICITY COORDINATES		
	$\bar{u}_{10}{ }^{(\lambda)}$	$\bar{v}_{10}{ }^{(\lambda)}$	$\bar{w}_{10}(\lambda)$	$u_{10}{ }^{(\lambda)}$	$\mathrm{v}_{10}{ }^{(\lambda)}$	${ }_{10}{ }^{(1)}$
630	0.4316	0.2835	0.1015	0.5286	0.3471	0.1243
635	0.3567	0.2283	0.0748	0.5407	0.3459	0.1134
640	0.2877	0.1798	0.0540	0.5517	0.3448	0.1035
645	0.2291	0.1402	0.0385	0.5618	0.3438	0.0943
650	0.1789	0.1076	0.0273	0.5701	0.3430	0.0869
655	0.1362	0.0812	0.0196	0.5746	0.3425	0.0828
660	0.1017	0.0603	0.0141	0.5775	0.3423	0.0803
665	0.0748	0.0441	0.0100	0.5802	0.3420	0.0779
670	0.0542	0.0318	0.0071	0.5822	0.3418	0.0760
675	0.0386	0.0226	0.0049	0.5837	0.3416	0.0746
680	0.0272	0.0159	0.0034	0.5848	0.3415	0.0737
685	0.0191	0.0111	0.0024	0.5854	0.3415	0.0731
690	0.0133	0.0077	0.0017	0.5858	0.3414	0.0728
695	0.0092	0.0054	0.0011	0.5861	0.3414	0.0725
700	0.0064	0.0037	0.0008	0.5863	0.3414	0.0724
705	0.0044	0.0026	0.0005	0.5862	0.3414	0.0724
710	0.0030	0.0018	0.0004	0.5859	0.3414	0.0727
715	0.0021	0.0012	0.0003	0.5856	0.3414	0.0730
720	0.0014	0.0008	0.0002	0.5851	0.3415	0.0734
725	0.0010	0.0006	0.0001	0.5846	0.3415	0.0739
730	0.0007	0.0004	0.0001	0.5840	0.3416	0.0744
735	0.0005	0.0003	0.0001	0.5834	0.3417	0.0750
740	0.0003	0.0002	0.0000	0.5827	0.3417	0.0756
745	0.0002	0.0001	0.0000	0.5819	0.3418	0.0763
750	0.0002	0.0001	0.0000	0.5812	0.3419	0.0770
755	0.0001	0.0001	0.0000	0.5803	0.3420	0.0777
760	0.0001	0.0000	0.0000	0.5795	0.3421	0.0785
765	0.0001	0.0000	0.0000	0.5786	0.3421	0.0793
770	0.0000	0.0000	0.0000	0.5777	0.3422	0.0801
775	0.0000	0.0000	0.0000	0.5767	0.3423	0.0810
780	0.0000	0.0000	0.0000	0.5757	0.3424	0.0819

Summation at 5 nm intervals
$\Sigma \bar{u}_{10}(\lambda)=15.5525$
$\Sigma \overline{\mathbf{v}}_{10}(\lambda)=23.3324$
$\Sigma \bar{w}_{10}(\lambda)=34.9999$

Summation at 10 nm intervals:

TABLE 2.4

$\stackrel{\lambda}{(n \mathrm{~m})}$	CHROMATICITY COORDINATES			Spectral tristimulus values		
	r(${ }^{\text {) }}$	$g(\lambda)$	$b(\lambda)$	I(A)	$\bar{g}(\lambda)$	$\bar{b}(\lambda)$
380	0.0272	-0.0115	0.9843	0.00003	-0.00001	0.00117
385	0.0268	-0.0114	0.9846	0.00005	-0.00002	0.00189
390	0.0263	-0.0114	0.9851	0.00010	-0.00004	0.00359
395	0.0256	-0.0113	0.9857	0.00017	-0.00007	0.00647
400	0.0247	-0.0112	0.9865	0.00030	-0.00014	0.01214
405	0.0237	-0.0111	0.9874	0.00047	-0.00022	0.01969
410	0.0225	-0.0109	0.9884	0.00084	-0.00041	0.03707
415	0.0207	-0.0104	0.9897	0.00139	-0.00070	0.06637
420	0.0181	-0.0094	0.9913	0.00211	0.00110	0.11541
425	0.0142	-0.0076	0.9934	0.00266	-0.00143	0.18575
430	0.0088	-0.0048	0.9960	0.00218	-0.00119	0.24769
435	0.0012	-0.0007	0.9995	0.00036	-0.00021	0.29012
440	-0.0084	0.0048	1.0036	-0.00261	0.00149	0.31228
445	-0.0213	0.0120	1.0093	-0.00673	0.00379	0.31860
450	-0.0390	0.0218	1.0172	-0.01213	0.00678	0.31670
455	-0.0618	0.0345	1.0273	-0.01874	0.01046	0.31166
460	-0.0909	0.0517	1.0392	-0.02608	0.01485	0.29821
465	-0.1281	0.0762	1.0519	-0.03324	0.01977	0.27295
470	-0.1821	0.1175	1.0646	-0.03933	0.02538	0.22991
475	-0.2584	0.1840	1.0744	-0.04471	0.03183	0.18592
480	-0.3667	0.2906	1.0761	-0.04939	0.03914	0.14494
485	-0.5200	0.4568	1.0632	-0.05364	0.04713	0.10968
490	-0.7150	0.6996	1.0154	-0.05814	0.05689	0.08257
495	-0.9459	1.0247	0.9212	-0.06414	0.06948	0.06246
500	-1.1685	1.3905	0.7780	-0.07173	0.08536	0.04776
505	-1.3182	1.7195	0.5987	-0.08120	0.10593	0.03688
510	-1.3371	1.9318	0.4053	-0.08901	0.12860	0.02698
515	-1.2076	1.9699	0.2377	-0.09356	0.15262	0.01842
520	-0.9830	1.8534	0.1296	-0.09264	0.17468	0.01221
525	-0.7386	1.6662	0.0724	-0.08473	0.19113	0.00830
530	-0.5159	1.4761	0.0398	-0.07101	0.20317	0.00549
535	-0.3304	1.3105	0.0199	-0.05316	0.21083	0.00320
540	-0.1707	1.1628	0.0079	-0.03152	0.21466	0.00146
545	-0.0293	1.0282	0.0011	-0.00613	0.21487	0.00023
550	0.0974	0.9051	-0.0025	0.02279	0.21178	-0.00058
555	0.2121	0.7919	-0.0040	0.05514	0.20588	0.00105
560	0.3164	0.6881	-0.0045	0.09060	0.19702	-0.00130
565	0.4112	0.5932	-0.0044	0.12840	0.18522	-0.00138
570	0.4973	0.5067	-0.0040	0.16768	0.17087	-0.00135
575	0.5751	0.4283	-0.0034	0.20715	0.15429	-0.00123
580	0.6449	0.3579	-0.0028	0.24526	0.13610	-0.00108
585	0.7071	0.2952	-0.0023	0.27989	0.11686	-0.00093
590	0.7617	0.2402	-0.0019	0.30928	0.09754	-0.00079
595	0.8087	0.1928	-0.0015	0.33184	0.07909	-0.00063
600 605	0.8475 0.8800	0.1537 0.1209	-0.0012	0.34429	0.06246	-0.00049
605	0.8800	0.1209	-0.0009	0.34756	0.04776	-0.00038
610	0.9059	0.0949	-0.0008	0.33971	0.03557	-0.00030
615	0.9265	0.0741	-0.0006	0.32265	0.02583	-0.00022
620	0.9425	0.0580	-0.0005	0.29708	0.01828	-0.00015

177
TABLE 2.4 (continued)

$\underset{(\mathrm{nm})}{\lambda}$	CHROMATICITY COORDINATES			SPECTRAL TRISTIMULUS VALUES		
	(1)	g(1)	$b(\lambda)$	$\overline{\mathrm{r}}$ (A$)$	$\bar{E}(\lambda)$	$\bar{b}(\lambda)$
625	0.9550	0.0454	-0.0004	0.26348	0.01253	-0.00011
630	0.9649	0.0354	-0.0003	0.22677	0.00833	-0.00008
635	0.9730	0.0272	-0.0002	0.19233	0.00537	-0.00005
640	0.9797	0.0205	-0.0002	0.15968	0.00334	-0.00003
645	0.9850	0.0152	-0.0002	0.12905	0.00199	-0.00002
650	0.9888	0.0113	-0.0001	0.10167	0.00116	-0.00001
655	0.9918	0.0083	-0.0001	0.07857	0.00066	-0.00001
660	0.9940	0.0061	-0.0001	0.05932	0.00037	0.00000
665	0.9954	0.0047	-0.0001	0.04366	0.00021	0.00000
670	0.9966	0.0035	-0.0001	0.03149	0.00011	0.00000
675	0.9975	0.0025	0.0000	0.02294	0.00006	0.00000
680	0.9984	0.0016	0.0000	0.01687	0.00003	0.00000
685	0.9991	0.0009	0.0000	0.01187	0.00001	0.00000
690	0.9996	0.0004	0.0000	0.00819	0.00000	0.00000
695	0.9999	0.0001	0.0000	0.00572	0.00000	0.00000
700	1.0000	0.0000	0.0000	0.00410	0.00000	0.00000
705	1.0000	0.0000	0.0000	0.00291	0.00000	0.00000
710	1.0000	0.0000	0.0000	0.00210	0.00000	0.00000
715	1.0000	0.0000	0.0000	0.00148	0.00000	0.00000
720	1.0000	0.0000	0.0000	0.00105	0.00000	0.00000
725	1.0000	0.0000	0.0000	0.00074	0.00000	0.00000
730	1.0000	0.0000	0.0000	0.00052	0.00000	0.00000
735	1.0000	0.0000	0.0000	0.00036	0.00000	0.00000
740	1.0000	0.0000	0.0000	0.00025	0.00000	0.00000
745	1.0000	0.0000	0.0000	0.00017	0.00000	0.00000
750	1.0000	0.0000	0.0000	0.00012	0.00000	0.00000
755	1.0000	0.0000	0.0000	0.00008	0.00000	0.00000
760	1.0000	0.0000	0.0000	0.00006	0.00000	0.00000
765	1.0000	0.0000	0.0000	0.00004	0.00000	0.00000
770	1.0000	. 0.0000	0.0000	0.00003	0.00000	0.00000
775	1.0000	0.0000	0.0000	0.00001	0.00000	0.00000
780	1.0000	0.0000	0.0000	0.00000	0.00000	0.00000

178
TABLE 2.5

$\left(\mathrm{cm}^{-1}\right)$	Spectral tristimulus values			CHROMATICITY COORDINATES		
	${ }^{1} 10^{(V)}$	$8_{10} 0^{(i)}$	$\bar{b}_{10}(\underline{D}$	${ }_{1} 10^{(V)}$	$g_{10}\left(\underline{ }{ }^{(\nu)}\right.$	${ }^{b_{10}}{ }^{(1)}$
27750	0.000000079100	-0.000 000021447	0.000000307299	0.21674	-0.058 77	0.84203
27500	0.00000029891	-0.000000008125	0.00000116475	0.21622	-0.058 77	0.84255
27250	0.00000108348	-0.000 00029533	0.00000423733	0.21560	-0.058 77	0.84317
27000	0.0000037522	-0.000 0010271	0.0000147506	0.21471	-0.058 77	0.84406
26750	0.0000123776	-0.000 0034057	0.0000489822	0.21358	-0.058 77	0.84519
26500	0.000038728	-0.000010728	0.000154553	0.212 is	-0.058 77	0.84662
26250	0.000114541	-0.000 032004	0.000462055	0.21032	-0.058 77	0.84844
26000	0.000319 05	-0.000 09006	0.00130350	0.20819	-0.058 77	0.85038
25750	0.00083216	$\begin{array}{llll}-0.000 & 238 & 07\end{array}$	0.00345702	0.20542	-0.058 77	0.85335
25500	0.00201685	-0.000 58813	0.00857776	0.20155	-0.058 77	0.85722
25250	0.0045233	-0.0013519	0.0198315	0.19664	-0.058 77	0.86213
25000	0.0093283	-0.002 8770	0.0425057	0.19054	-0.058 77	0.86823
24750	0.0176116	-0.005 6200	0.0840402	0.18339	-0.058 52	0.87513
24500	0.030120	0.010015	0.152451	0.17455	-0.058 04	0.88349
24250	0.045571	-0.016 044	0.251453	0.16219	-0.057 10	0.89491
24000	$0.060 \quad 154$	-0.022 951	0.374271	0.14619	-0.055 78	0.90939
23750	0.071261	-0.029 362	0.514950	0.12797	-0.052 73	0.92476
23500	0.074212	-0.032 793	0.648306	0.10760	-0.047 55	0.93995
23250	0.068535	-0.032 357	0.770262	0.08498	-0.040 12	0.95514
23000	0.055848	-0.027 996	0.883628	0.06127	-0.030 71	0.96944
22750	0.033049	-0.017 332	0.965742	0.03367	-0.017 66	0.98399
22500	0.000000	0.000000	1.000000	0.00000	0.00000	1.00000
22250	-0.041 570	0.024936	0.987224	-0.042 83	0.02569	1.01714
22000	-0.088 073	0.057100	0.942474	-0.096 62	0.06264	1.03398
21750	-0.143 959	0.099886	0.863537	0.17567	0.12189	1.05378
21500	-0.207 995	0.150955	0.762081	-0.295 01	0.21411	1.08090
21250	-0.285 499	0.218942	0.630116	-0.506 60	0.388 50	1.11810
21000	0.346240	0.287846	0.469818	-0.841 56	0.69963	1.14193
20750	-0.388 289	0.357723	0.333077	-1.28355	1.18251	1.10104
20500	0.426587	0.435138	0.227060	-1.810 56	1.84685	0.96371
20250	-0.435 789	0.513218	0.151027	-1.907 54	2.24646	0.66108
20000	-0.438 549	0.614637	0.095840	-1.612 74	2.26029	0.35245
19750	-0.404 927	0.720251	0.057654	-1.085 66	1.93108	0.15458
19500	-0.333 995	0.830003	0.029877	-0.635 11	1.57830	0.05681
19250	-0.201889	0.933227	0.012874	-0.271 28	1.25398	0.01730
19000	0.000000	1.000000	0.000000	0.00000	1.00000	0.00000
18750	0.255754	1.042957	-0.008 854	0.19828	0.80858	-0.006 86
18500	0.556022	1.061343	0.014341	0.34686	0.66209	-0.008 95
18250	0.904637	1.031339	-0.017 422	0.47152	0.53756	-0.009 08
18000	1.314803	0.976838	-0.018 644	0.57844	0.42976	-0.008 20
17750	1.770322	0.887915	-0.017 338	0.67035	0.33622	-0.006 57
17500	2.236809	0.758780	-0.014 812	0.75041	0.25456	-0.004 97
17250	2.641981	0.603012	-0.011 771	0.81714	0.18650	-0.003 64
17000	3.002291	0.452300	-0.008 829	0.87130	0.13126	-0.002 56
16750	3.159249	0.306869	-0.005 990	0.91304	0.08869	-0.001 73
16500	3.064234	0.184057	-0.003 593	0.94438	0.05673	-0.001 11
16250	2.717232	0.094471	-0.001 844	0.96704	0.03362	-0.000 66
16000	2.191156	0.041693	-0.000 815	0.98169	0.01868	-0.00037

TABLE 2.5 (continued)

$\underset{\left(\mathrm{cm}^{-1}\right)}{\overline{2}}$	spfctral tristimulus values			CHROMATICITY COORDINATES		
	$\mathrm{F}_{10}{ }^{(\nu)}$	$\overline{8}_{10}{ }^{(\overline{1})}$	$\bar{B}_{10}\left({ }^{(0)}\right.$	${ }^{1} 10^{(\nu)}$	$810^{(\overline{2})}$	${ }^{6} 10^{(0)}$
15750	1.566864	0.013407	-0.000 262	0.99168	0.00849	-0.000 17
15500	1.000000	0.000000	0.000000	1.00000	0.00000	0.00000
15250	0.575756	-0.002 747	0.000054	1.00470	-0.004 79	0.00009
15000	0.296964	-0.002 029	0.000040	1.00674	-0.00688	0.00014
14750	0.138738	-0.001 116	0.000022	1.00795	-0.008 11	0.00016
14500	0.0602209	-0.000 5130	0.0000100	1.00842	-0.008 59	0.00017
14250	0.0247724	-0.000 2152	0.0000042	1.00859	-0.008 76	0.00017
14000	0.00976319	-0.000 08277	0.00000162	1.00838	-0.008 55	0.00017
13750	0.00375328	-0.000 03012	0.00000059	1.00793	-0.008 09	0.00016
13500	0.00141908	-0.000 01051	0.00000021	1.00731	-0.007 46	0.00015
13250	0.000533169	$-0.000003 \quad 543$	0.000000069	1.00656	-0.006 69	0.00013
13000	0.000199730	-0.000 001144	0.000000022	1.00565	-0.005 76	0.00011
12750	0.0000743522	-0.000 0003472	0.0000000068	1.00460	-0.004 69	0.00009
12500	0.0000276506	-0,000 0000961	0.0000000019	1.00342	-0.003 49	0.00007
12250	0.0000102123	-0.000 0000220	0.0000000004	1.00212	-0.002 16	0.00004

PART VI

RETROREFLECTION DEFINITION AND MEASUREMENT

LIST OF CONTENTS

1. FOREWORD 1
2. TERMINOLOGY AND COORDINATE SYSTEM FOR RETROREFLECTION 2
2.1. General definitions 2
2.2. Principal photometric terms 2
2.3. The CIE angular reference system for describing, specifying and testing retroreflectors 3
2.4. Geometric definitions 3
2.5. Conventions 6
2.6. Goniometer 6
3. DIMENSIONAL AND PHYSICAL SPECIFICATIONS FOR THE PHOTOMETRY OF RETROREFLECTION 7
3.1. The angular aperture δ of the source 9
3.2. The angular aperture γ of the photometer head 10
3.3. The angular opening η of the retroreflector 11
3.4. The adjustement of the observation angle α and the required precision of the entrance and rotation angles 12
3.5. The measuring distance 12
3.6. The illuminance at the retroreflector 13
3.7. Specification of the source 13
3.8. The photometer head 13
3.9. The influence of regular reflection 14
PHOTOMETRIC CALIBRATION TECHNIQUES AND MEASUREMENT PRECAUTIONS IN THE PHOTOMETRY OF RETROREFLECTION 15
4.1. Calibration Techniques 15
4.1.1. General 15
4.1.2. Conventional calibration techniques 15
4.1.3. Calibration method using an auxiliary lamp and photometer head 16
4.1.4. Substitutional method 16
4.1.4.1. Calibrated reference standards 17
4.1.5. The spectroradiometric method of measuring the coefficient of luminous intensity 17
4.1.6. Calibration for the measurement of coefficient of retroreflection 17
4.2. General measurement precautions 18
4.2.1. Residual and stray light 18
4.2.2. Siability of the apparatus 18
4.2.3. Check on goniometer angle scales 18
4.2.4. Check on observation angle scale 18
4. COLORIMETRY OF RETROREFLECTORS 19
5.1. General 19
5.2. Measurement techniques 19
5.2.1. Daytime colour measurement 19
5.2.2. Nighttime colour measurement 20
5.2.2.1. Spectroradiometers 20
5.2.2.2. Telecolorimeters 21
5.3. Measurement precautions and tolerances 21
5.3.1. Spectrophotometers and spectroradiometers 21
5.3.2. Tristimulus colorimeters and telecolorimeters 21
5.3.3. Variation between different instruments 22
5.4. Recommended geometry for the colorimetry of retroreflectors 22
5.4.1. Daytime condition 22
5.4.2. Nightlime condition 22
APPENDIX A RELATIONSHIP BETWEEN THE NEW CIE SYSTEM OF ANGULAR REFE- RENCE FOR RETROREFLECTORS AND CURRENTLY USED OR PROPO- SED SPECIFICATION SYSTEMS 23
A) ECE Regulation 3 and Regulation 27 23
A2 United States SAE specification J594f 23
A3 The intrinsic system 24
APPENDIXB ANGULAR TRANSFORMATION TO BE USED WITH THE ALTERNATIVE GONIOMETER AS RECOMMENDED BY THE CIE IN 1959 25
APPENDIX C CALIBRATION OF A REFLEX PHOTOMETER USING THE AUXILIARY LAMP AND AUXILIARY PHOTOMETER HEAD METHOD 26

1. FOREWORD

The results of the work carried out by the former CIE Committee W-3.3.5, Automobile Headlights and Signal Lights, were published in the Proceedings of the 14th Session of the CIE (CIE Publication No. 1, 1959, pages 566-571) under the title of General Recommendations for Reflex Reflector Photomerry.
In 1974 a subgroup, Photometry, of the CIE Committee TC-4.7, Automobile Lighting, reconsidered these recommendations in order to bring them into better agreement with the prevailing practice. This subgroup proposed the introduction of another type of measuring goniometer, which was deemed to be of sufficient importance for a revision of the previous recommendations.
Also in 1974, CIE Committee TC-1.6, Visual Signalling, completed three draft documents on retroreflection. One of these documents, on Terminology, included a proposal for an intrinsic geometric system for describing retroflection. Thus in 1974 three geometric systems were under consideration by various CIE committes.
In 1975 a CIE Harmonizing Group on Retroreflection was established to make a more general study of the terminology and the definitions in the field of retroreflection for universal use by the CIE. This group prepared, in 1976, a document on names and units and another one on systems of angular reference. Apart from these documents the Harmonizing Group paid considerable attention to other important items, such as dimensional and physical specifications for the equipment, calibration techniques in measuring retroreflection and fundamentals of the colorimetry of retroreflectors.
Retroreflection at a macroscopic scale, if not at a microscopic one, may be considered as a particular kind of reflection. Therefore, in 1977, the study of retroreflection and of the corresponding measuring techniques was assigned to the CIE Committee TC-2.3 Materials whose terms of reference are : To study and develop methods for photometric and radiometric characterization of materials.
The process of retroreflection is widely used for increasing the visibility of objects and information for road traffic at night. The corresponding devices, or retroreflectors, may be divided into three broad categories, namely retroreflective signs, retroreflectors for road vehicles and retroreflective road markings. Since their application interests primarily three other CIE technical committees, TC-1.6, Visual Signalling, TC-4.7, Automobile Lighting, and TC-4.6, Road Lighting, coordination of the work and cooperation between these technical committees and TC-2.3 had to be established, respecting however the necessity for harmony concerning common fundamental questions.

The subcommittee, Retroreflection, was set up within the framework of TC-2.3 and studied the fundamental questions relating to retroreflection. These questions refer to :

> Terminology and symbols
> Instrumentation
> Methods for photometry
> Methods for colorimetry
> Problems of accuracy.

This part of the work covered all categories of retroreflectors in order to secure the required harmonization for the basic parameters which are common to all types.
This subcommittee has also worked on and documented the special problems of the photometry at grazing incidence and view of flat horizontal retroreflective material such as road markings. However, this work is not contained in this report, since it will be further studied in a new subcommittee, Road Markings, of Committee TC-1.6.
It is the province of the relevant CIE technical committees to determine the performance requirements for the types of retroreflectors they have to deal with. This includes the selection of the most appropriate geometrical conditions under which the retroreflectors are to be tested.
The subcommittee, Retroreflection, his of the opinion that this technical report provides well defined measuring procedures and useful advice, which are important for persons who are working with these materials in test laboratories or for others who have an immediate interest in the results of tests.
The general improvement in accuracy of test data, which can result by following the contents of this repor, should also lead to more correct assessment of product compliance with specified requirements.

2. TERMINOLOGY AND COORDINATE SYSTEM FOR RETROREFLECTION

This section contains definitions which describe the properties of retroreflectors. The general definitions define retroreflection as a phenomenon without regard to the luminosity function. The principle photometric terms are quantities recommended for the specification and description of retroreflectors used in visual signalling applications. Both the general definitions and the principle photometric terms appear in the International Lighting Vocabulary (4th edition, to be published).

2.1. GENERAL DEFINITIONS

2.1.1. Retroreflection

Reflection in which the reflected rays are preferentially returned in directions close to the opposite of the direction of the incident rays, this property being maintained over wide variations of the direction of the incident rays.

2.1.2. Retroreflector

A surface or device from which most of the reflected radiation is retroreflected.

2.1.3. Observation Angle α

Angle by which the direction of observation of the retroreflector departs from the direction of the incident light. (See 2.4.4.).

2.1.4. Entrance Angle β

Angle characterizing the angular position of the retroreflector with respect to the direction of the incident light. (See 2.4.7., 2.4.9. and 2.4.10.).
Note : For a plane retroreflector, the entrance angle corresponds generally to the angle of incidence.

2.2. PRINCIPAL PHOTOMETRIC TERMS

2.2.1. Coefficient of Luminous Intensity

The quotient of the luminous intensity (I) of the retroreflector in the direction of observation by the illuminance $\left(E_{1}\right)$ at the retroreflector on plane perpendicular to the direction of the incident light.

Symbol R

$$
R=\frac{I}{E_{1}}
$$

Note 1 : In the photometry of retroreflectors this coefficient is expressed in candelas per lux (cd lx^{-1}).
Note 2 : For accurate measurements of R, care must be taken that the angular extent of the retroreflector at the point of observation, of the source aperture at the retroreflector and of the aperture of the photometer head (the part of a physical photometer containing the detector and means for spectral and spatial corrections of the detector) at the retroreflector are each sufficiently restricted. The restriction needed depends upon both the distribution of the retroreflected light and the measurement geometry. (See Sections 3-1 to 33).

Note 3 : For accurate measurements of R the illuminance (E_{\perp}) must be sufficiently uniform over the useful area of the retroreflector. (See Section 3-6).

2.2.2. Coefficient of Retroreflection (of plane retroreflecting surface)

The quotient of the coefficient of luminous intensity (R) of a plane retroreflecting surface by its area (A).
Symbol R'

$$
\begin{equation*}
R^{\prime}=\frac{R}{A}=\frac{I / E_{1}}{A} \tag{sec2.2.1}
\end{equation*}
$$

Note $1:$ The coefficient of retroreflection is expressed in candelas per lux per square metre ($\mathrm{cd} \mathrm{lx}^{-1} \mathrm{~m}^{-2}$).
Note 2 : This quantity is espectially useful for describing materials in sheet form. For such materials the measurements are customarily made with the direction of illumination, the direction of observation, and the normal to the surface all in the same plane.

2.3. THE CIE ANGULAR REFERENCE SYSTEM FOR DESCRIBING, SPECIFYING AND TESTING RETROREFLECTORS

In this section an angular reference system is presented, the use of which is recommended when dealing with retroreflection. A retroreflector is usually illuminated with nearly collimated light and the reflected light of interest is directed nearly parallel to the direction of the incident light. These circumstances make it natural to regard the direction of illumination as the principal direction and to regard the direction of observation and the orientation of the retroreflector in terms of the direction of illumination. The CIE (angular reference) system for describing, specifying and testing retroreflectors has been developed from this basis (Venable and Johnson, 1980). It coincides with the way in which retroreflection is visualised. In the case of road vehicles, in which the retroreflectors are often considered as luminous sources, it can be regarded as describing the orientation of such a source in what is essentially the viewer's frame of reference.
In describing the angular quantities, the source of illumination, the retroreflector and the photometer head are all treated as points. Actual measurements involve light sources and photometer heads which subtend finite solid angles at the retroreflector and retroreflectors with finite physical dimensions. An indication of how these finite angles and dimensions affect the measurements and what restrictions must be placed on them is given in section 3 on the photometry of retroreflectors.
The angular reference system for retroreflectors uses no more reference points, planes, axes, and angles than are needed to fully describe the phenomena of retroreflection. Within the angular limits prescribed, the system is complete but not redundant. Each configuration of the source, retroreflector and photometer head can be described by one and only one set of four angles. (The four angles are $\alpha, \beta_{1}, \beta_{2}$ and ϵ. The entrance angle β may always be derived from β_{1} and β_{2}). The angular limits allow for all possible configurations of the retroreflector, source and photometer head. However, since most retroreflectors have one face only, the total allowable angular range is normally not used. The sign convention applied here is such that the positive direction of each axis and the positive sense of each angle are as indicated by the directions of the arrows in Figures 1 and 2. This system is completely defined in section 2.4.

2.4. GEOMETRIC DEFINITIONS

2.4.1. Reference Centre

A point on or near a retroreflector which is designated to be the centre of the device for the purpose of specifying its performance.
Note 1 : Designating the reference centre (2.4.1.), the reference axis (2.4.6.) and the datum mark (2.4.12.) establishes coordinates fixed with respect to the retroreflector by means of which its location and angular orientation can be specified. (For a retroreflective device, these geometrical parameters are usually designated by the manufacturer). This coordinate system is related to the intended use of the retroreflector. The location of the reference centre is chosen to be on or near the retroreflecting surface and central with respect to it. When symmetry exists, the reference axis usually coincides with the axis of symmetry of the retroreflector. When required, a datum mark not on the reference axis serves to indicate the orientation of the retroreflector about the reference axis.

Figure 1. - The CIE angular reference system for specifying and measuring retroreflectors. The first axis is perpendicular to the plane containing the observation axis and the illumination axis. The second axis is perpendjcular both to the first axis and to the reference axis. All axes, angles, and directions of rotation are shown positive.

Notes
a) The principal fuxed axis is the Illumination Axis.
b) The First Axis is fured perpendicular to the plane containing the Observation and Illumination Axis.
c) The Reference Axis is fuxed in the retroreflector and moveable with β_{1} and B_{2}.

Figure 2. - A representation of a goniometer mechanism embodying the CIE angular reference system for specifying and measuring retroreflectors. All angles and directions of rotation are shown positive.

2.4.2. Illumination Axis

A line segment from the reference centre to the source of illumination.

2.4.3. Observation Axis

A line segment from the reference centre to the photometer head.

2.4.4. Observation Angle (Symbol α)

The angle between the illumination axis and the observation axis. The observation angle is always positive and in the context of retroreflection is restricted to small acute angles. Maximum range : $0 \leqslant \alpha<180^{\circ}$.

2.4.5. Observation Half-Plane

The half-plane which originates on the illumination axis and which contains the observation axis.

2.4.6. Reference Axis

A designated line segment originating on the reference centre which is used in describing the angular position of the retroreflector. (See Note 1, Section 2.4.1.).

2.4.7. Entrance Angle (Illumination Angle) (Symbol $\boldsymbol{\beta}$)

The angle from the illumination axis to the reference axis. The entrance angle is usually not larger than 90°, but for completeness its full range is defined as $0 \leqslant \beta \leqslant 180^{\circ}$. In order to completely specify the orientation, this angle is characterized by two components, β_{1} and β_{2}.

2.4.8. First Axis

An axis throught the reference centre and perpendicular to the obseryation half-plane.

2.4.9. First Component of the Entrance Angle (Symbol β_{1})

The angle from the illumination axis to the plane containing the reference axis and the first axis.
Range : $-180^{\circ}<\beta_{1} \leqslant 180^{\circ}$

2.4.10. Second Component of the Entrance Angle. (Symbol $\boldsymbol{\beta}_{2}$)

The angle from the plane containing the observation half-plane to the reference axis. Range : $-90^{\circ} \leqslant \beta_{2}$ $\leqslant 90^{\circ}$.

2.4.11. Second Axis

An axis through the reference centre and perpendicular to both the first axis and the reference axis. The positive direction of the second axis lies in the observation half-plane when $-90^{\circ}<\beta_{1}<90^{\circ}$ as shown in Figure 1.

2.4.12. Datum Mark

A mark on the retroreflector which is used to indicate the orientation of the retroreflector with respect to rotation about the reference axis. The datum mark must not lie on the reference axis. (See Note 1, Section 2.4.1.).

2.4.13. Rotation Angle (Symbol ϵ)

The dihedral angle from the half-plane originating on the reference axis and containing the positive part of the second axis to the half-plane originating on the reference axis and containing the datum mark. Range : $-180^{\circ}<\beta<180^{\circ}$. (See Figure 2).

2.5. CONVENTIONS

2.5.1. If the retroflector has a datum mark and the rotation angle is unspecified, $\epsilon=0$.
2.5.2. When the entrance angle β alone is specified without reference to components, $\beta_{2}=0$ and $\beta_{1}=\beta$.
2.5.3. When $\beta_{2}= \pm 90^{\circ}$, the reference axis coincides with the first axis and motions about these axes are the same. To avoid redundancy in this special case, by convention the second axis will be chosen to lie in the observation half plane and be perpendicular to the illumination axis, β_{1} is by convention set equal to zero, and by convention the orientation is represented by ε alone.
2.5.4. When $\alpha=0$, the observation axis and the illumination axis coincide. In this special case, the definition of the observation half-plane can no longer be applied. Therefore by convention the half-plane originating on the illumination axis and containing the reference axis is used as if it were the observation half-plane. Also in this case allowing separate motions for β_{1} and β_{2} results in redundancy, therefore when $\alpha=0$ only β_{1} is used and its range is limited to $0<\beta_{1} \leqslant 180^{\circ}, \beta_{2}=0$.
2.5.5. When $\alpha=0$ and $\beta=0$, the rotation angle can no longer be defined and by convention then $\epsilon=0$.

2.6. GONIOMETER

A goniometer which can be used in making retroreflection measurements in the CIE geometry, as defined in Sections 2.3.-2.5. of this report, is illustrated in Figure 2. In this illustration the photometer head is arbitrarily shown to be vertically above the source. The first axis is shown to be fixed and horizontal and is situated perpendicular to the observation half-plane. Any arrangement of the components which is equivalent to the one shown can be used.
Some goniometers currently in use have an axis fixed perpendicular to the illumination axis in the observation half-plane. If it is not convenient to modify such apparatus so that it will coincide directly with the CIE angular system, the transformation given in Appendix B can be used to determine angular settings of such an apparatus to provide the values given for β_{1}, β_{2} and ϵ.

3. DIMENSIONAL AND PHYSICAL SPECIFICATIONS FOR THE PHOTOMETRY OF RETROREFLECTORS

INTRODUCTION

In order to obtain an acceptable accuracy and compatible results between different laboratories when measuring the coefficient of luminous intensity of a retroreflector, the following aspects should be considered (see Figure 3).

Figure 3. - Typical parameters involved with the effect of retroreflection.

For a retroreflector mounted in a fixed position the luminous distribution of the retroreflected beam in a plane through the illumination axis can, in general, be expressed by :

$$
i_{\alpha}=C f(\alpha)
$$

where i_{α} is the intensity reflected in that plane for an observation angle α. C is a parameter, which is a constant for the plane considered and $f(\alpha)$ is an analytical function of α, appropriate to the distribution concerned.

An example of the distribution of the beam from a corner cube retroreflector has been shown in Figure 4. The distribution was measured (see Figure 5) by using an optically plane glass, with its normal at 45° to the illumination axis, placed between the retroreflector and the (small) source of illumination and by moving the photometer head with a very small opening over a line parallel to the illumination axis in the plane containing both the illumination axis and the normal to the optical glass.
The distribution as given in Figure 4 has a half peak divergence of 38.5 minutes of arc. Measurements on a wide range of samples have shown that for such bell-shaped distributions the half peak divergence may vary from about 28 minutes of are for very narrow beams up to about 13 degrees for very wide beams.

The important items to be considered in the photometry of retroreflectors are (see also Figure 6) :
(i) The angular aperture δ of the source of illumination, as seen from the reference centre of the retroreflector.
(ii) The angular aperture γ of the photometer head, as seen from the reference centre of the retroreflector.
(iii) The angular opening η of the retroreflector, as seen from the centre of the source (or from the centre of the photometer head).
(iv) The adjustment of the observation angle α and the required precision of the entrance and rotation angles.
(v) The measuring distance.
(vi) The illuminance at the retroreflector.

Figure 4. - Intensity distribution in a retroreflected beam from a corner-cube reflector of good quality, red in colour.

Figure 5. - Particular equipment used for the measurement of the intensity distribution in a retroreflected beam, including the reflected intensities in the area around $\alpha=0$.

Figure 6. - Apertures and angles involved with retroreflection measurements.
(vii) The specification of the source.
(viii) The adaptation of the photometer head to the CIE Standard Photometric Observer.
(ix) The influence of a regular reflection, the colorless reflection from the front face of the reflector.
(x) The effect of residual reflections and stray light (see 4.2.1.).
With regard to the items (i), (ii), (iii) and (iv) calculations of the measuring error were made for strip-shaped source, photometer head and retroreflector configurations, with all strips in the same plane; this configuration was considered to be the most critical and, moreover, it is easy to apply a mathematical treatment to it (Moerman, 1977).

3.1. THE ANGULAR APERTURE δ OF THE SOURCE

For a limited size η of the retroreflector (see Figure 6 and section 3.3.) the relative error caused by the dimension δ of the source in the measurement of the reflected intensity can, in the general case (see Introduction), be calculated from the expression :

$$
\text { Relative error }=\frac{f^{*}(\alpha)}{f(\alpha)} \cdot \frac{\delta^{2}}{24}
$$

where $f^{*}(\alpha)$ represents the second derivative of $f(\alpha)$ with regard to α and α and δ are expressed in the same units.
The expression shows that large errors are to be expected at a large value of δ, especially when at the same time the ratio $f^{\prime \prime}(\alpha) / f(\alpha)$ reaches a large value. Particular attention should therefore be paid to the critical area in the distribution concerned (see Figure 4).
For bell-shaped distributions the error has a negative value for $\alpha=0$, this indicates that the measured reflected intensity is too low. For narrower beams and larger values of δ the absolute value of this error increases rather quickly.
As the observation angle a is increased, the absolute error gradually decreases until zero is reached, while for still greater observation angles the error becomes positive and the measured reflected intensity is too high. The area where the maximum positive error occurs is usually found near the bottom of the distribution. Experiments have shown that in many cases these positive errors are never greater than 3.5 . times the absolute error at the observation angle $\alpha=0$.
Note. See also the Notes 1 and 2 Section 3.2.

3.2. THE ANGULAR APERTURE γ OF THE PHOTOMETER HEAD.

When the source dimension δ is sufficiently small but the dimension γ of the photometer head cannot be neglected, an extra error appears, which can be written for the general case (see Introduction) :

$$
\text { Relative error }=\frac{f^{\prime \prime}(\alpha)}{f(\alpha)} \cdot \frac{\gamma^{2}}{24}
$$

This expression has the same form as the relationship given in section 3.1. with δ replaced by γ; it therefore leads to similar conclusions.

Note 1 : The total relative error caused by the apertures of the source and the photometer head together is the sum of the relative errors calculated separately.
Note 2 : The error caused by the dimension of the photometer head can also be derived graphically from the distribution of reflected intensity, plotted on linear scales, by applying Simpson's rule to the curve over the angle-area bounded by the aperture of the photometer head (see Figure 7). Because the error caused by the saurce dimension is determined by an expression completely similar to that determining the en. nausad by the aperture of the photometer head, the same graphical method can be applied to estimate the influence of the aperture of the source on the measuring accuracy.

Simpson's rule says:
average height $=\frac{1}{6}(a+4 b+c)$
difference between average height and centre height is

$$
\frac{1}{6}(a-2 b+c)
$$

relative difference is therefore

$$
\frac{1}{6}\left(\frac{a+c}{b}-2\right)
$$

Figure 7. - Graphical estimation of the error from the distribution curve $f(\alpha)$.

Note 3 : The validity of the theoretical analysis of the influence of aperture sizes was confirmed by experiment, combined with a computer integration technique, on four practical types of retroreflective material (Johnson and Stephenson, 1980).
Note 4 : For bell-shaped distributions the measuring errors as caused by the dimensions of the source and the photometer head can be derived from Table 3.1. which is reproduced from Moerman (1977). Table 3.2. gives further guidance on the aperture size to use for various categories of retroreflectors.

3.3. THE ANGULAR OPENING $\boldsymbol{\eta}$ OF THE RETROREFLECTOR

When, as for the example given in Figure 8, the influence of the entrance angle β on the intensity reflected in the direction of the photometer head can be described by an expression :

$$
i_{d}=C^{\prime} f(\beta)
$$

where i_{θ} is the intensity reflected in the position $\beta . \mathrm{C}^{\prime}$ is a parameter, which is constant in the entrance plane considered. $\mathrm{f}(\beta)$ is an analytical function of β, appropriate to the characteristic concerned,
the error in the measurement of a retroflector, observed under an opening η, can be estimated from the value :

$$
\text { Relative error }=\frac{f^{\prime \prime}(\beta)-8 \tan \beta f^{\prime}(\beta)}{f(\beta)} \cdot \frac{\eta^{2}}{24}
$$

where $\mathrm{f}^{\prime}(\beta)$ and $\mathrm{f}^{\prime \prime}(\beta)$ represent the first and the second derivatives of $\mathrm{f}(\beta)$ with respect to β and β and η are expressed in radians.

The expression makes it plausible that large errors are to be expected if a large value of η combines with a large value of the ratio $f^{\prime \prime}(\beta) / f(\beta)$.
Most attention should therefore be paid to the critical area of the characteristic concerned (see Figure 8).

Figure 8. - Influence of the entrance angle β on the intensity reflected in the direction of the photomeer head.

The effect is of special importance for the examination of large-size corner-cube retroreflectors, which may give rise to a relative error of 0.5% when the retroreflector opening η corresponds to 80 minutes of arc and the entrance angle β chosen is about 30 degrees.

3.4. THE ADJUSTMENT OF THE OBSERVATION ANGLE α AND THE REQUIRED PRECISION OF THE ENTRANCE AND ROTATION ANGLES

Maladjustment of the observation angle α can lead to relatively large errors in the measured intensity; in the general case (see Introduction) where the intensity distribution in a certain plane throught the illumination axis follows the expression :

$$
i_{\alpha}=C f(\alpha)
$$

the relative error will be:

$$
\text { Relative error }=\frac{f^{\prime}(\alpha)}{f(\alpha)} \cdot \Delta \alpha
$$

where $f^{\prime}(\alpha)$ represents the first derivative of $f(\alpha)$ with respect to α and $\Delta \alpha$ is the error in the observation angle.

The expression shows that large values of $\mathrm{f}^{\prime}(\alpha) / \mathrm{f}(\alpha)$, which appear in narrow beams for relatively large values of α, will increase the error caused by an inaccurate setting of the observation angle. With respect to the example of Figure 4, the error concerned with $\alpha=20^{\prime}$ and $\Delta \alpha=1^{\prime}$ will be 0.075 (7.5%).
For a very narrow reflected beam, observed at not too small an observation angle, the adjustment of the observation angle should therefore be accurate within a fraction of a minute of arc.
It is evident that the position of both the centre of the aperture of the source and that of the photometer head should be clearly defined and recognized.
A similar discussion applies to errors associated with the rate of change of the angles β_{1}, β_{2} and ϵ. Experience has shown that reflectors of cube-corner construction are most sensitive to errors in these angular settings. If one wishes to make accurate measurements on such a retroreflector in the areas where the coefficient of luminous intensixy is heavily dependant on the selting of the angle concerned, an excellent quality goniometer with angle scales which can be read correctly to about $\pm 0.10^{\circ}$ (or better) must be used. The accuracy in setting the angles β_{1}, β_{2} or ϵ for a retroreflective sheeting is not so critical; for such a material an error of $\pm 0.2^{\circ}$ in these angles can usually be tolerated.

3.5. THE MEASURING DISTANCE

The measuring distance must be chosen with particular regard to :
(i) the required accuracy
(ii) the practical dimensions of the source and the photometer head
(iii) the shape of the distribution in the reflected beam.

For a reasonably accurate measurement, with bell-shaped distributions, the total error at the observation angle $\alpha=0$, caused by the apertures of the source and the photometer head together, should preferably not exceed $1 \%_{0}$; if this condition is fulfilled the errors appearing at much greater observation angles will usually not be greater than 3.5%.
The narrower the beams the smaller will be the angular apertures required. Small angular apertures can be obtained by using a source and photometer head of small practical dimensions or by using a sufficiently long measuring distance.
For bell-shaped distributions the measuring errors, caused by the dimensions of the source and the photometer head, can be derived from Table 3.1.

Example

If both the source and the photometer head have a practical diameter of say 15 mm and the measuring distance in a conventional arrangement is chosen to be 10 m , the angular apertures of source and photometer head will be about 5.1 minutes of arcं; for beams with a half peak divergence (h.p.d) not smaller than 40 minutes of are the measuring error will then normally always be below 2.6%.

For extremely narrow bell-shaped beams with an h.p.d down to 28 minutes of arc, the configuration just described may, especially with regard to larger observation angles, lead to greater errors of up to about 5.1%. If such an error cannot be accepted and the source dimension has to be maintained, the diameter of the photometer head must be reduced to 7.5 mm , corresponding to an aperture of about 2.6 minutes of arc. This aperture combined with the source aperture of 5.1 minutes of are will again guarantee a sufficiently accurate measurement, with errors not exceeding 3.2% even for extremely narrow beams.
When the effective diameter of the photometer head is changed, the correction of the photometer head to the CIE Standard Observer must still be maintained (see 3.8).

Additional Comments

It is to be expected that when a longer measuring distance is used the adjustment of the observation angle can be carried out with a higher accuracy. For a 10 m measuring distance 1 minute of arc corresponds to 2.9 mm ; at this distance the position of the centre of the aperture of the source and that of the photometer head should be known to within a fraction of a millimeter, in particular when very narrow beams have to be examined.
On the other hand it should be noted that a long test distance will significantly reduce the illuminance al the photometer head, which may result in supplementary errors from zero level instability and other random variations. The test distance should therefore be chosen as a compromise by which the observation angle can be set to an acceptable accuracy and the sensitivity of the photometer head is adequate to ensure that the signal is large enough to swamp any uncertainty in the zero or other instabilities.
The test distance should be measured accurately. Depending on the method of calibration (see sections 4.1.2 and 4.1.3.) a 1% error in the measurement of the test distance may cause an error of 2% or more in the photometric result.
The lateral displacement of the reflected beam, particularly from corner cube devices having individual retroreflective elements of large size requires special treatment and a large test distance is then needed for accurate measurement. Such devices are not considered further in this report.

3.6. THE ILLUMINANCE AT THE RETROREFLECTOR

The illuminance over the useful area of the retroreflector, measured perpendicular to the incident light shall be sufficiently uniform.

A check of this requirement needs a measuring element, the sensitive area of which is not greater than one tenth of the area to be examined. The variation in the value of the illuminance shall then comply with the condition :

$$
\frac{\max . \text { value }}{\min . \text { value }}<1.05
$$

3.7. THE SPECIFICATION OF THE SOURCE

The source used for illuminating the retroreflector shall as faithfully as possible represent the CIE Standard Illuminant A in its spectral power distribution.
Experience has shown that a deviation of $\pm 50 \mathrm{~K}$ from the required distribution temperature may give rise to less accurate results when measuring coloured retroreflectors.
If for any reason a different light source is used this must be in accordance with the relevant specification.

3.8. THE PHOTOMETER HEAD

The photometer head shall be corrected to the CIE Standard Photometric Observer function, V (λ).
The device shall not show a perceptible change in local sensitivity within the area of its aperture; otherwise suitable provisions must be added, such as a diffusing window at a certain distance in front of the sensitive surface.

Experience has shown that non-linearity of photometer heads may be a problem with the very small light quantities which are the rule in the photometry of retroreflectors. A linearity check at comparable illuminance levels is recommended.

3.9. THE INFLUENCE OF A REGULAR REFLECTION

The amount and distribution of the regular reflection from the surface of the retroreflector depends on the flatness and the gloss of the surface. A regular reflection can seriously distort the measurement of retroreflection. In general, regular reflection is best avoided by placing the reference axis so that the regular reflection is directed on the opposite side of the source from the photometer head, for example with $\beta_{1}=-5^{\circ}$.

Table 3.1. - Estimated relative error (in \%) for an observation angle $\alpha=0^{\circ}$, for various values of the half peak divergence and of the source (δ) or photometer head (γ) apertures, for bell-shaped distributions (all data have been rounded off).

Half peak divergence (minutes of arc)	Source (δ) or photometer head (γ) aperture (minutes of arc)							
	10	8	6	5.1	5	4	3	2.6
81	0.35	0.22	0.13	0.09	0.09	0.06	0.03	0.02
57	0.70	0.45	0.25	0.18	0.18	0.11	0.06	0.05
40	1.4	0.90	0.50	0.37	0.35	0.23	0.13	0.10
28	2.8	1.8	1.0	0.73	0.70	0.45	0.25	0.19

Note 1: The total relative error caused by the apertures of the source and the photometer head together is found by summation of the relative errors determined separately for the dimensions concerned.

Note 2 : The maximum relative error which usually occurs in the measurement at a large observation angle will normally not be greater than 3.5 times the relative error at the observation angle $\alpha=0$. If δ is chosen equal to $\gamma, \delta=\gamma=0.15 \times$ h.p.d. (for maximum error $\leqslant 3.5 \%$).

Table 3.2. - Recommended aperture size for various categories of retroreflectors.

Category	Beam Shape	Maximum Aperture Size (minutes of arc)	
		Source (δ)	Photometer Head (γ)
Corner-cube prisms	very narrow beam	4	4
Corner-cube prisms	narrow beam	6	- 6
Spherical lens retroreflective sheeting	narrow beam	6	6
Exposed lens systems on paint e.g. road marking material	wider beam	10	10

4. PHOTOMETRIC CALIBRATION TECHNIQUES AND MEASUREMENT PRECAUTIONS IN THE PHOTOMETRY OF RETROREFLECTION

4.1. CALIBRATION TECHNIQUES

4.1.1. General (Stephenson, 1978; Johnson, 1979)

The photometric properties of a retroreflector depend, apart from the measurement geometry, on its spectral reflection characteristic and on the spectral power distribution of the light source.
Because all current test specifications refer to measurement using CIE Standard Illuminant A with the photometer head corrected to the CIE Standard Photometric Observer V (A) function, most laboratories use simplified measuring equipment to avoid spectral analysis and computation (see 4.1.5.). The calibration techniques applicable to such simplified equipment are given below.
The photometric calibration consists essentially of determining, for one geometric arrangement, the luminous intensity of the retroreflector in the direction of observation and also the illuminance falling on the retroreflector in a plane perpendicular to the direction of the incident light. The quotient of these two quantities gives, for this geometric arrangement, the value of the Coefficient of Luminous Intensity (\mathbf{R}) of the retroreflector in the unit of candela per lux ($\mathrm{cd} \mathrm{lx}^{-1}$), from which a scale factor may be derived for the instrument reading.
This scale factor is used to convert readings made at other measurement geometries directly into \mathbf{R} valuts, provided the photometer response is linear and that throughout the test both the illuminance at the retroreflector and the responsivity of the photometer remain unchanged.
It is also necessary for the apparatus to be so designed that the illuminance over the sample area and the responsivity across the area of the photometer head are sufficiently uniform. In addition, the centroids of the iight source aperture and of the photometer head must be well defined and symmetric. For the light source, this requirement infers that at its exit aperture light is emitted symmetrically with respect to the axis of illumination and, hence, also about the centroid. The distribution temperature of the light source must also be known (see section 3.7.).
For measurements on coloured retroreflectors it is strongly recommended that special attention should be given to obtaining the best possible correction to the CIE Standard Photometric Observer V ($\boldsymbol{\lambda}$) function. With many commercially available photometer heads the correction is not adequate for measuring retroreflectors and measurement uncertainties occur.
An earlier commonly used technique was to calibrate with colour filters of known transmission, similar in colour to the retroreflector under test. Experience has shown that because the choice is limited of available colour filters having suitable spectral transmission curve shapes close to the spectral reflectance characteristics of many retroreflectors, the method may frequently fail to compensate sufficiently for an inadequate correction of the photometer head to the $\mathbf{V}(\lambda)$ function.
For the measurement of the photometric performance of, for example, retroreflective road markings a different measuring technique may be used involving luminance measurements (Morren, 1980 and 1982). This matter is currently being studied by CIE Technical Committee TC-1.6 in a subcommittee on Road Markings.

4.1.2. Conventional Calibration Techniques

The calibration procedure generally follows one of of two methods, either the relative method or a direct method.

The relative method has the advantage that it avoids the use of calibrated reference lamps and illuminance meters. It uses the same photometer head for determining both the illuminance at the retroreflector and also its luminous intensity, so that the photometer head does not need to be calibrated. The photometer head is moved to the position of the retroreflector and the illuminance falling on it is measured, giving an arbitrary scale reading M_{1}. Then with the photometer head placed at the correct distance and observation angle, the illuminance falling on it from the retroreflector is measured in the same scale units, giving a reading M_{2}. The value of the Coefficient of Luminous Intensity in candelas per lux is given by the formula

$$
\mathrm{R}=\frac{\mathrm{M}_{2} \times \mathrm{D}^{2}}{\mathrm{M}_{1}} \mathrm{~cd} . \mathrm{lx}^{-1}
$$

where D is the distance in metres between the retroreflector and the photometer head.
The Scale Factor for use in subsequent measurements which, when multiplied by any photometer head reading M, will convert M to an R value in candelas per lux is :

Scale Factor $=D^{2} / \mathrm{M}_{1} \mathrm{~cd}$ lx ${ }^{-1}$ per unit of photometer head reading.
This method is self calibrating and its use restricts photometric calibration errors to the linearity of the photometer head and, for measurements on coloured retroreflectors, to the quality of the correction of the photometer head to the CIE Standard Photometric Observer (see section 4.1.1.).
In the method, the range of illuminances to be measured is large, so that the linearity must be checked over the full range used and where necessary, appropriate corrections made to the measured values. The linearity checking method given in CIE Publication No. 25, 1970 (Procedures for the Measurement of Luminous Flux of Discharge Lamps and for their Calibration as Working Standards) is recommended.

In the direct method, the illuminance at the retroreflector in lux is measured by a separate illuminance meter, the calibration of which must be known. The luminous intensity of the retroreflector is determined by placing a suitable calibrated reference lamp of known luminous intensity at the retroreflector to calibrate the scale of the photometer head. When measuring coloured retroreflectors, unless a well corrected photometer head is used, a colour filter of known transmission and having a similar spectral characteristic to the retroreflector may be placed in the front of the reference lamp to compensate for errors in the correction of the photometer head to the CIE Standard Photometric Observer (see section 4.1.1.). The overall accuracy of the method is limited by the combined errors in the calibration of both the illuminance meter and the reference lamp. Such errors can be minimised by using the reference lamp itself to calibrate the illuminance meter.

4.1.3. Calibration Method using an Auxiliary Lamp and Photometer Head

In some laboratories a calibration technique is used which employs an auxiliary lamp of unknown but stable luminous intensity and an auxiliary photometer head, which is uncalibrated but is known to have a linear response.
The auxiliary lamp is used at convenient distances from the photometer head in the apparatus and from the auxiliary photometer head, to determine both their responses per unit of illuminance in arbitrary units. The illuminance falling on the test sample from the light source in the apparatus is measured in the same arbitrary units using the auxiliary photometer head. The illuminance, falling on the photometer head in the apparatus from the test sample, is recorded, again in arbitrary units. From the four readings and the known distances, the R value for the test sample can be derived; see Appendix C .
It is also possible to arrange in the calibration that by altering the responsivity of the photometer head in the apparatus, its reading will indicate the R value of test sample either directly or in convenient powers of 10 (Artom, 1981).
It should be noted that any errors present in each of the four stages of the calibration may be additive and hence may limit the overall accuracy obtainable using this method.

4.1.4. Substitution Method

An alternative calibration method is sometimes used where a previously calibrated retroreflecting device is available as a reference standard. This is interchanged with the test sample under test so that the calibration is made by a direct substitution. The ratio of the reading on the sample to that on the reference standard when multiplied by the known photometric value assigned to the reference standard, gives the R value for the test sample.

This technique is used especially with certain short range reflex photometer designs, such as those using a collimating lens or fibre optics. It is recommended that where the photometric calibration facilities in a laboratory are inadequate for applying the methods described in Sections 4.1.2. and 4.1.3., substitutional calibration should be made with reference standards previously calibrated by a reputable laboratory.

4.1.4.1. Calibrated Reference Standards

Reference standards should be stable and have been calibrated at one or more measuring geometries by a conventional technique (see section 4.1.2.) or, with some allowance for the overall accuracy, by the method using an auxiliary lamp (see section 4.1.3.). The calibration of the reference standard must be checked periodically.
The type of retroreflector chosen as a reference standard should be one having a smooth retroreflected light distribution, so that its mounting position and orientation are not critical. For this reason corner-cube constructions are not recommended.
A diffusely reflecting reference surface, such as one of barium sulphate or magnesium oxide, should not be used because such surfaces are themselves retroreflective at small observation angles and their reflectance is then heavily dependent on the observation angle (Meacock et al., 1962).
Devices using a good quality retroreflective sheet material are much better suited as reference standards, assuming however that these materials are sufficiently stable with time, are handled and stored with care and are calibrated and used at a fixed entrance angle, which avoids regular reflections in the direction of observation. In the case of the photometer in an equipment not being completely corrected to the CIE Standard Photometric Observer function, the use of a sheet material similar in colour to the retroreflector under test is recommended.
Concave or convex mirrors (Chandler and Reid, 1961) are not recommended for calibration purposes, because small imperfections in such mirrors may cause large local variations in the R value.
4.1.5. The Spectroradiometric Method of Measuring the Coefficient of Luminous Intensity (Blaise, 1980; Rennilson, 1980).
The procedure uses a monochromator of good quality to measure the spectral coefficient of luminous intensity $R(\lambda)$ for wavelengths throughout the visible spectrum.
This is effected, for the selected measurement geometry, by substituting the monochromator for the photometer head and analysing the spectral distribution of the light received at the sample and that in the retroreflected beam. Wavelength intervals of 10 nanometers are suggested.

The coefficient of luminous intensity R, referring to a particular arbitrary light source (usually CIE Standard Illuminant A), is calculated using the measured $R(\lambda)$ values, the relative spectral power distribution of the light source $S(\lambda)$ and the CIE Standard Photometric Observer function $V(\lambda)$, as follows :

When determining $\mathbf{R}(\lambda)$ experimentally neither the spectral distribution of the light source nor the spectral sensitivity of the photometer in the monochromator is critical. However, they must be sufficiently stable throughout the two measurements required to calculate $\mathbf{R}(\mathrm{A})$.
A high luminance source such as a short-arc Xenon lamp may be an advantage to ensure an adequate signal level. This will provide more flux at the shorter wavelengths than that given by a filament lamp.
The procedure has the advantage of not requiring a specified illuminant and not needing a $V(\lambda)$ corrected photometer head. It has the disadvantage of being a much more lengthy procedure than that using conventional equipment. However, with the recent introduction of the microprocessor controlled spectroradiometer, the time required for measurement and for the calculation is significanty reduced. It is expected that in the future the use of such devices will become more widespread.
In addition, it should be noted that an extension of the calculation will also provide the chromaticity coordinates; see section 5 .

4.1.6. Calibration for the Measurement of Coefficient of Retroreflection

A reflex photometer measures the Coefficient of Luminous Intensity of the test sample. To derive the Coefficient of Retroreflection for material in the sheet form it is necessary to measure a known area of the sample
and calculate the R value per unit area. If a substitution method of calibration is used (see section 4.1.4.) employing a reference standard where its Coefficient of Retroreflection is known, it is convenient to measure an area of the test sample equal to that of the reference standard. No correction for area is then needed.

4.2. GENERAL MEASUREMENT PRECAUTIONS

4.2.1. Residual and Stray Light

Since very low light levels are to be measured special precautions are needed to minimise errors due to stray light. The background to the sample and the framework of the sample holder should be matt black and the field of view of the photometer head and the spread of light from both the sample and the source should each be restricted as much as possible.
Reflections from the floor and walls which occur over the relatively long test distances used must be screened from both the sample and the photometer head by baffles. The importance of looking from the photometer head to check for sources of stray light cannot be over emphasised.
A valuable aid to reducing the amount of stray light in the laboratory is to use a slide projector type of optical system for the light source. With this, an iris diaphragm or suitable sized apertures may be used in the optical system to restrict the illuminated area at the sample to the minimum size needed to provide uniform illuminance over the sample.
Residual stray light should always be allowed for by measuring it when the sample is covered by an opaque matt black surface, zig-zag folded black paper of the same size and shape or a specular black surface suitably oriented with a light trap. This value should be subtracted from that measured on the retroreflector.

4.2.2. Stability of the Apparatus

The light source and photometer head should remain stable throughout the period of the test. Since the responsivity and the correction to the $V(\lambda)$ function of most photometer heads change with temperature, the laboratory ambient temperature should not vary significantly during this period. Sufficient time should always be allowed for the apparatus to stabilise before commencing measurements.
The power supply to the light source should be adequately stabilised so that the luminous intensity of the lamp can be maintained throughout the test to within the required accuracy for the work.
A useful check on the overall stability of the reflex photometer during a series of tests is to make periodic measurements of the R value of a stable reference standard selected in line with the criteria given in Section 4.1.4.1.

Another technique is to incorporate in the apparatus an auxiliary detector to check or monitor the output of the light source. Although the output from the auxiliary detector can be checked for any change in reading, a useful refinement is to use the output to alter electronically the responsivity of the main reflex photometer head and compensate automatically for changes in the light output of the source.

4.2.3. Check on Goniometer Angle Scales

The index marks on both the goniometer angle scales of the sample holder need to be checked to ensure that with zero angle settings on both scales the axis representing the reference axis coincides with the direction of the incident light. This is effected by placing a good quality plane mirror on the sample holder, perpendicular to and symmetric with the axis representing the reference axis, and tilting the goniometer so that the reflected image of the light source is central on the source aperture. The index marks should now be adjusted to read zero degrees. Additional checks may be required depending on the system used for angle measurement.

4.2.4. Check on the Observation Angle Scale

An initial check must be made to determine the centroid of the light pattern emitted at the exit aperture of the light source and, for the photometer head aperture, the centroid of responsivity to light teceived from the retroreflector under test, see Section 4.1.1. For work of high accuracy it will be necessary to find these centroids by experiment using small diameter probes e.g. a fibre optic.
The observation angle setting scale must now be checked using these centroids either by a direct measurement of the distance between them or by optical means e.g. a theodolite or similar optical sighting device looking from the centre of the sample holder. It is essential that the scale is so checked that the observation angle can be set to within a fraction of a minute of arc.

5. COLORIMETRY OF RETROREFLECTORS

5.1. GENERAL

Colorimetry of retroreflective materials requires special measurement conditions, because these materials exhibit different spectral distributions of reflected light when illuminated by day and by night. The purpose of this section is to summarize the techniques of measurement for both daytime and nighttime colorimetry. The section states the precision of measurement and the criteria required for instrumentation to determine the colour of retroflective material. In addition, recommended measurement geometry is given for colorimetric specification. It is necessary that the colours of retroreflective material be measured under geometric and spectral conditions that simulate those of actual use.
The practical daytime use of retroreflective material uses an illumination that is a combination of diffuse light from the sky and direct light from the sun. These illuminating conditions vary throughout the day and from day to day. Light from a retroreflective device thus reaches an observer by a combination of diffuse reflection and retroreflected light incident from areas behind the observer. The correlated colour temperature of the incident daylight varies from $5,000 \mathrm{~K}$ to $15,000 \mathrm{~K}$ depending upon whether the light is omnidirectional, such as an overcast sky, or unidirectional from the sun. Most of the skylight incident on a retroreflective material never reaches the observer, a part is retroreflected, a part specularly reflected and the remainder diffusely reflected. Sunlight is specularly and diffusely reflected by the surface of the retroflective material away from the observer and it is only when the sun is directly behind the observer and low in the sky, that the retroreflective component dominates in the daytime.
At night the light from a source near the observer, a vehicle headlamp usually, illuminates the retroreflective material with a distribution temperature approaching that of CIE Standard Illuminant A (see section 3.7.). The entrance and observation angles change as the observer approaches the retroreflective material.

5.2. MEASUREMENT TECHNIQUES

The basic instrumentation for both daytime and nighttime measurement of chromaticity may follow either a spectral or a tristimulus method. However, a spectral technique is generally to be preferred, since the measurement yields ratios of spectral quantities from which the chromaticity may be computed using a source spectral power distribution and tristimulus data from CIE Publication No. 15, 1971, Colorimetry.
Colorimeters and telecolorimeters require that their filter-detector combinations are closely matched to the CIE colour matching functions, and care should be exercised in choosing instruments to ensure their performance meets the required accuracy. In addition, for daytime colorimetry it is customary to specify the chromaticities on the basis of the spectral power distribution of CIE Standard Illuminant D 65. Some instruments provide a practical source approximating D 65 in the visible region, using filtered Tungsten Halogen lamps and some use a filtered Xenon lamp which also simulates the UV region of D 65 , which is more applicable to retroreflective materials which exhibit fluorescence.

5.2.1 Daytime colour measurement (Asher et al., 1978)

In daytime the greatest use of retroreflective materials is for traffic signs. Since these are mounted vertically the illumination on them is incident from only half of the sky and they are usually seen by an observer in directions near to the normal to the sign. The geometry is therefore neither d / O nor $45 / 0$, the optimum lying somewhere between the two. However, tests with different instruments have shown that those with $45 / 0$ geometry are in better agreement for measuring retroreflectors, because the results of colour measurements with sphere instruments (d / O or O / d geometry) depend strongly on the sizes of apertures and gloss traps. Accordingly, a $45 / 0$ geometry is recommended (as in CIE Publicaiton No. 39, 1978, Surface Colours for Visual Signalling) to exclude both the specular component of reflectance and retroreflected radiation. Some
modern spectrophotometers have illuminating and viewing geometries of $45 / 0$ and these conditions correspond with those commonly used in colorimeters. It is important that the apertures of the illuminating and viewing beams be limited to not greater than $\pm 4^{\circ}$, because the instrument geometry is critical.
Calibration of the instrument can normally be made using a barium sulphate plaque. However, with tristimulus instruments where the filters do not provide a sufficiently close match to the CIE colour matching functions, it is necessary to calibrate the instrument using reference standards having spectral and geometrical characteristics closely similar to that of the samples being tested. In addition, when the source is not a satisfactory approximation to CIE Standard Illuminant D 65, reference standards are necessary. These reference standards need to be calibrated for CIE Standard Illuminant D 65.
There is evidence that some retroreflective materials exhibit a small amount of fluorescence. Where this is present the sample should be illuminated with polychromatic D 65 radiation for measurement.
The measurement of the daytime colour of road marking materials presents special problems and is excluded from this report.

5.2.2. Nighttime colour measurement (Blaise, 1980; Rennilson, 1980; Stephenson, 1976).

Chromaticity measurements are made under illuminating and viewing conditions which simulate those occurring at night. The measurement geometry is similar to that utilized in the photometric measurement of the Coefficient of Luminous Intensity. The illuminating source together with the test method is similar to that described earlier and should be followed in the measurement of the colour.
Studies have been made on the effect that the angular subtense of the photometer head has on the accuracy of the chromaticity measurements. The chromaticity change is small for small entrance angles and close observation angles. The change of chromaticity with geometry under nighttime conditions thus indicates that angular subtenses as large as about ten minutes of arc may be satisfactorily used without influencing the colour measurement.

5.2.2.1. Spectroradiometers

The colorimetry of retroreflective material using a spectroradiometer may follow one of two methods. In each of these methods, the spectroradiometer is usually equipped with collection optics such that the field of view is limited to a size slightly in excess of the retroreflector.
The use of these methods does not require that the source be at the designated distribution temperature or that the intensity scale of the spectroradiometer be absolutely calibrated. However, the spectroradiometer must be linear, and its wavelength scale must be calibrated.
In the first method, the spectroradiometer is placed at the position of the sample and measures the relative spectral power distribution of the source. This is followed by a measurement of the retroreflection at a position close to that of the source.
The second technique uses the radiation of the source reflected from a barium sulphate plaque. This method has the advantage that the detector signal from the source and the signal from the retroreflector can be adjusted to be approximately the same magnitude by properly choosing the distance between the source and the barium sulphate plaque. However, in both methods, the responsivity and angular acceptance of the spectroradiometer must be held constant during the series of measurements of the retroreflection and the source.

The chromaticity coordinates x and y are obtained from the tristimulus values X, Y, and Z for the particular geometry ($\alpha, \beta_{1}, \beta_{2}$ and ϵ) which are calculated using the following equations:

$$
\begin{aligned}
& \mathbf{X}=\text { Constant } \cdot \sum_{300}^{100}\left[\mathrm{~m}_{2}(\lambda) / \mathrm{m}_{1}(\lambda)\right] \cdot \mathrm{S}(\lambda)\left[\beta\left(\mathrm{BaSO}_{4}\right)(\lambda)\right] \times(\lambda) \Delta \lambda \\
& \mathbf{Y}=\text { Constant } \cdot \sum_{300}^{700}\left[\mathrm{~m}_{2}(\lambda) / \mathrm{m}_{1}(\lambda) \cdot \mathrm{S}(\lambda)\left[\beta\left(\mathrm{BaSO}_{4}\right)(\lambda)\right] \bar{y}(\lambda) \Delta \lambda\right. \\
& \mathbf{Z}=\text { Constant } \cdot \sum_{300}^{700}\left[\mathrm{~m}_{2}(\lambda) / \mathrm{m}_{1}(\lambda)\right] \cdot \mathrm{S}(\lambda)\left[\beta\left(\mathrm{BaSO}_{4}\right)(\lambda)\right] z(\lambda) \Delta \lambda
\end{aligned}
$$

where $m_{2}(\lambda)$ is the spectroradiometric reading of the sample and $m_{1}(\lambda)$ equals the spectroradiometric reading of the incident radiation either directly or reflected from a barium sulphate plaque. $S(\lambda)$ is the spectral power distribution of the prescribed illuminant, usually CIE Standard Illuminant A. For the first method the term $\left[\beta\left(\mathrm{BaSO}_{4}\right)(\lambda)\right]$ is equal to unity because the barium sulphate plaque is not used.

For the second method, because the reflectance of barium sulphate is not constant but varies slightly with wavelength, the radiance factor $\left[\beta\left(\mathrm{BaSO}_{4}\right)(\lambda)\right]$ for the particular barium sulphate used has to be included. The functions $\bar{x}(\lambda), \bar{y}(\lambda)$ and $\bar{z}(\lambda)$ are the CIE colour matching functions and the constant in the equations is simply a proportionality factor and is eliminated by self-division when the chromaticity coordinates are computed; see CIE Publication No. 15, 1971, Colorimetry.

5.2.2.2. Telecolorimeters

The telecolorimeter is equipped with tristimulus filters. The trimming of the output of the photometer head in combination with each of the filters should be such that the tristimulus values have the proper relative values. A means of focusing the retroreflective material on a field stop is required and the stop should be of such a size that the field of view of the telecolorimeter is slightly in excess of the retroreflective sample. The source must be adjusted as close as possible to the prescribed illuminant, usually CIE Standard Illuminant A. The calibration of the telecolorimeter may be accomplished by focusing the telecolorimeter on a barium sulphate plaque, or on a reference colour standard, illuminated by the source and measuring the response of the respective tristimulus filters. The responsivity and angular acceptance of the telecolorimeter must not be altered during the measurement sequence.

5.3. MEASUREMENT PRECAUTIONS AND TOLERANCES

5.3.1. Spectrophotometers and spectroradiometers

Both these instruments are similar in that they possess dispersive elements to separate the radiation into its wavelength components. Abridged spectrophotometers consisting of narrow band interference filters also separate the radiant flux in a similar manner. The most serious errors in spectrophotometers or spectroradiometers arise from the deviations of linearity of the photometric scale and wavelength position. The upper end of the photometric scale for a spectrophotometer is normally set, for reflectance measurement, by the selection of an appropriate standard. The lower end point of the scale, for reflectance measurement, should be set not by blocking the light beam, but rather by the use of a highly efficient light trap at the sample. For nighttime colorimetry using a spectroradiometer, a black trap with the same size as the sample should be used in the sample position, to measure the stray light present when the retroreflective sample is removed from the photometer.
Secondary standards, such as filters with known transmittance or reflectance standards with known reflectance factors, are used widely to check the linearity of the photometric scale. Addition of flux techniques, such as light addition method may be used as well. Wavelength dependent errors must also be taken into account and the wavelength scale should be periodically checked using emission line sources so that position and the slit width errors, if significant, are recognized and corrected for. The illuminating source should contribute negligible amounts of polarization to the retroreflective sample, and the spectrophotometers and spectroradiometers should be as insensitive to polarized light as possible to minimize the effect of any polarized light coming from the retroreflective sample. The use of diffusers or integrating cavities is suggested. In general, retroreflective material does not depolarize light in a predictable manner.
The wavelength reproducibility of spectrophotometers and spectroradiometers for colorimetry of retroreflective material should be within accepted tolerance limits; see CIE Publication, Spectroradiometry of Light Sources (in preparation). The photometer head should be stable and linear. For a discussion of errors, see CIE Publication No. 53, 1982, Methods of Characterizing the Performance of Radiometers and Photometers.
For referee purposes it is recommended that the integration range be 380 to 780 nm at 10 nm intervals using a triangular bandpass of 10 nm . Other bandpasses and integration ranges may be used provided they agree sufficiently closely with the referee method to satisfy the users.

5.3.2. Tristimulus colorimeters and telecolorimeters

If the tristimulus filters are not of high quality, these instruments should be used with reference standards and correction factors should be computed for the master standards. In some instruments this is performed automatically. When making measurements for nighttime colour, it is recommended that correction factors for specific reference standards of the retroreflective material be computed and used when measuring samples of the same colour. The same care for stray light and polarization insensitivity is important in colorimeters and telecolorimeters.

The overall errors and calibration factors together with the repeatability of the system should be sufficient to allow measurements of the chromaticity coordinates to be within accepted tolerances.

5.3.3. Variation between differeat instruments

Variations between instruments of the same kind are usually smaller than between different kinds of instruments. The deviation between different kinds of instruments is usually larger than the stability and linearity error of one instrument.
In colorimeters another error occurs which is caused by the filtering in the instrument, but nevertheless a good colorimeter can give better results than a spectroradiometer with poor linearity and stability.
A deviation of ± 0.010 in both x and y can expected for measurements of retroreflective materials with different types of instruments. The measurement deviations will vary with the colour of the retroreflective material.

5.4. RECOMMENDED GEOMETRY FOR THE COLORIMETRY OF RETROREFLECTORS

5.4.1. Daytime

Daytime measurements of retroflectors should be made at a geometry of $45 / 0$ (0/45). For additional information, see also CIE Publication No. 15, 1971, Colorimetry and CIE Publization No. 39, 1978, Surface Colours for Visual Signalling.

5.4.2. Nighttime

The colour of retroreflective material can change significantly with illuminating and viewing geometries. It is recommended that the same geometry should be used in the nighttime colour measurement of retroreflectors as in the measurement of the coefficient of luminous intensity, R, or the coefficient of retroflection, R^{\prime}. That is, for most applications, an observation angle of 20^{\prime} and an entrance angle β_{1} of -5°, with a maximum aperture for the source and photometer head of 10^{\prime}. Also, for specific applications where the variation of chromaticity as a function of the geometry is important, additional angles, such as 2° for observation angle and 30° for entrance angle, may be used.

APPENDIX A

RELATIONSHIP BETWEEN THE NEW CIE ANGULAR REFERENCE SYSTEM FOR RETROREFLECTORS AND CURRENTLY USED OR PROPOSED SPECIFICATION SYSTEMS

In the interest of promoting international uniformity in measurement, the writers of several of the most widely used specifications and test methods for retroreflectors have expressed their intention to use the new CIE angular reference system in their documents. These documents are expected to be available before or soon after the publication of this report. Conversions to the new CIE system from two other systems currently used, which are not expected to be changed immediately, and from a system as proposed in 1975 (Blaise, 1975) under the name Intrinsic System, follow.

A.1. E.C.E. Reg. 3 dated 23rd September 1964 and Reg. 27 dated 7 June 1972

These documents refer to a CIE recommendation by Committee W-3.3.5. appearing in Proccedings of the 14th Session of the CIE (CIE Publication No. 7, 1959). In this recommendation, the entrance angle is defined by two spherical coordinates giving the position of the (moveable) reference axis, vertical (V) and horizontal (H), analogous to latitude and longitude in a system in which the equator (containing the fixed illumination axis) is horizontal and the observation plane vertical. However, for determining the signs of these coordinates, the ECE Reg. 3 refers to the position of the illumination axis with respect to the reference axis when looking at the reflector, so that the sign of V is always opposite to that of β_{1} and the sign of H always opposite to that of β_{2}.

In order to secure, in every respect, the same orientation of the reflector with respect to the illumination and observation axes, the following equations apply :

CIE angle	ECE Regulations
α	$=\alpha$
β	$=\beta$
$\tan \beta_{1}$	$=-\frac{\tan V}{\cos \mathrm{H}}$
$\sin \beta_{2}$	$=-\cos V \sin \mathrm{H}$
when $-90^{\circ}<\mathrm{V}<+90^{\circ}$ and $-90^{\circ}<\mathrm{H}<+90^{\circ}$	
$\epsilon($ according to Figure 2$)$	$=-\epsilon($ according to ECE + a correction $\Delta \epsilon$

Note 1 : When'looking at the retroreflectors, the positive direction of the rotation angle is clockwise according to ECE Regulation 3, but counter-clockwise according to Figure 2. For maintaining the orientation corresponding to the ECE Regulation when using a goniometer as illustrated in Figure 2, an additional rotation about the reference axis becomes necessary as soon as both coordinates differ from zero. The value $\Delta \epsilon$ of this additional rotation is given by

$$
\tan \Delta \epsilon=\tan H \sin V=\tan \beta_{1} \sin \beta_{2}
$$

Note 2 : For the inverse transformation see Appendix B.

A.2. United States SAE Specification J594f

This system describes measurements on the basis of a goniometer with a horizontal and a vertical axis but since only one of the two axes is involved at any one time, the difference between the two systems is immaterial.

CIE angle	SAE J594f angle
α	$=$ Observation Angle
$\beta_{1}>0$	$=$ "down" entrance angle
$\beta_{1}<0$	$=$ "up" entrance angle
$\beta_{2}>0$	$=$ "right" entrance angle
$\beta_{2}<0$	$=$ "left" entrance angle
ϵ	$=$ Negative of SAE rotation angle

A.3. The intrinsic system as proposed to the 9th Conference of the International Association of Lighthouse Authorities (Blaise, 1975).

$$
\begin{aligned}
\text { CIE angle } & \text { Angle(s) according to the Intrinsic System } \\
\alpha & =\alpha \\
\beta & =\beta \\
\tan \beta_{1} & =\tan \beta \cos \delta \\
\sin \beta_{2} & =\sin \beta \sin \delta \\
\cos \epsilon & =\frac{\sin \gamma \cos \beta \sin \delta-\cos \gamma \cos \delta}{\left[\cos ^{2} \delta+\sin ^{2} \delta \cos ^{2} \beta\right]^{1 / 2}} \\
\sin \varepsilon & =\frac{\cos \gamma \cos \beta \sin \delta+\sin \gamma \cos \delta}{\left[\cos ^{2} \delta+\sin ^{2} \delta \cos ^{2} \beta\right]^{1 / 2}}
\end{aligned}
$$

where $\beta<90^{\circ}$.
For the inverse transformation the following expressions can be used.

$$
\begin{aligned}
& \cos \beta=\cos \beta_{1} \cos \beta_{2} \\
& \cos \gamma=\frac{\sin \epsilon \cos \beta_{1} \sin \beta_{2}-\cos \epsilon \sin \beta_{1}}{\left[\sin ^{2} \beta_{2}+\cos ^{2} \beta_{2} \sin ^{2} \beta_{1}\right]^{1 / 2}} \\
& \sin \gamma=\begin{array}{c}
\cos \epsilon \cos \beta_{1} \sin \beta_{2}+\sin \epsilon \sin \beta_{1} \\
{\left[\sin ^{2} \beta_{2}+\cos ^{2} \beta_{1} \sin ^{2} \beta_{1}\right]^{1 / 2}}
\end{array} \\
& \cos \delta=\frac{\sin \beta_{1} \cos \beta_{2}}{\left[\sin ^{2} \beta_{2}+\cos ^{2} \beta_{2} \sin ^{2} \beta_{2}\right]^{1 / 2}} \\
& \sin \delta=\frac{\sin \beta_{2}}{\left[\sin ^{2} \beta_{2}+\cos ^{2} \beta_{2} \sin ^{2} \beta_{1}\right]^{1 / 2}}
\end{aligned}
$$

except when both $\beta_{1}=0$ and $\beta_{2}=0$, then δ is undefined. If, in this case, γ is measured relative to the observation plane, then one convention is to let $\delta=0$ and $\cos \gamma=-\cos \epsilon ; \sin \gamma=\sin \epsilon$.
In the above expressions the angular parameters of the intrinsic system are :
$\alpha-$ observation angle
β - entrance angle
$\gamma-$ angle of orientation
δ - angle of presentation

Note : The Harmonising Group document (unpublished) referred to in the Foreword uses the symbol γ for the angle of presentation and ω for the angle orientation.

APPENDIX B

ANGULAR TRANSFORMATION TO BE USED WITH THE ALTERNATIVE GONIOMETER AS RECOMMENDED BY THE, CIE IN 1959 AND AS FURTHER DEFINED IN ECE REGULATION No. 3

The new CIE angular reference system for specifying and measuring retroreflectors was chosen to coincide with the type of goniometer arrangement shown in Figure 2, which is the most commonly used arrangement for measuring retroreflectors. A second type of goniometer is sometimes used in which the fixed axis lies in the observation plane. If it is not possible to alter the arrangement of such apparatus to conform with the new CIE angular reference system, or if it is not convenient to do so, the following transformation can be used to set the angles in such an apparatus to provide specified components of the entrance angle in the new CIE system. In the transformation, the angle H ($-90^{\circ}<\mathrm{H}<+90^{\circ}$) represents rotation about an axis fixed in the observation half-plane and perpendicular to the illumination axis, and the angle $\mathrm{V}\left(-90^{\circ}<\mathrm{V}\right.$ $<+90^{\circ}$) represents rotation about an axis perpendicular to both the reference axis and the axis about which H is measured, then

$$
\begin{gathered}
\tan \mathrm{H}=-\frac{\tan \beta_{2}}{\cos \beta_{1}} \\
\sin \mathrm{~V}=-\cos \beta_{2} \sin \beta_{1} \\
\text { When : }-90^{\circ}<\beta_{1}<+90^{\circ} \text { and }-90^{\circ}<\beta_{2}<+90^{\circ} \\
\epsilon(\text { according to } \mathrm{ECE})=-\epsilon \text { (according to Figure } 2)+ \text { a correction } \Delta \epsilon
\end{gathered}
$$

Note : This is the inverse transformation to that given in Appendix A, Section A.1. As soon as the coordinates β_{1}, β_{2} and thus the corresponding ones V, H both differ from zero, an additional rotation $\Delta \epsilon$ must be made about the reference axis in order to re-establish the same position of the retroreflector referring to its orientation. The value of this additional rotation is given by

$$
\tan \Delta \epsilon=\tan \beta_{1} \sin \beta_{2}=\tan \mathrm{H} \sin V
$$

APPENDIX C

CALIBRATION OF A REFLEX PHOTOMETER USING THE AUXILIARY LAMP AND AUXILIARY PHOTOMETER HEAD METHOD

The auxiliary lamp is used as a reference light source and is operated at a stable voltage such that its colour temperature is approximately that of CIE Standard Illuminant A. Its luminous intensity I does not need to be known. The lamp is usually mounted near to the sample holder of the reflex photometer.
The auxiliary photometer head, usually containing a photovoltaic detector, may be uncalibrated but the overall response must have been checked for linearity.

In the following the numerical values of the parameters are given with luminous intensities expressed in ed, illuminance in Ix , dimensions in m and coefficient of luminous intensity in $\mathrm{cd} \mathrm{lx}^{-1}$. Preliminary measurements are made using the auxiliary lamp to determine the responses per unit of illuminance of the photometer head in the reflex photometer and of the auxiliary photometer head as follows:
(a) With the auxiliary lamp placed at a distance ' D ' from the photometer head in the reflex photometer (see Figure C 1), record the reading R_{D} in arbitrary scale units.
The illuminance at the photometer head $=1 / D^{2}$
Hence the reading per unit of illuminance is :

$$
\begin{equation*}
\frac{\mathrm{R}_{\mathrm{D}} \cdot \mathrm{D}^{\mathbf{2}}}{\mathrm{I}} \tag{Cl}
\end{equation*}
$$

(b) With the auxiliary photometer head placed at a distance ' d ' from the auxiliary lamp (see Figure C), record the reading Re .
The illuminance at the auxiliary photometer head $=1 / \mathrm{d}^{2}$.
Hence the reading per unit of illuminance is :

$$
\begin{equation*}
\frac{R_{1} \cdot d^{2}}{I} \tag{C2}
\end{equation*}
$$

Figure Cl

The next step is to measure the illuminance falling on the sample holder from the light source in the reflex photometer. The auxiliary photometer head is placed in the position of the sample and normal to the direction of the incident light (see Figure \mathbf{C}). If the reading is \mathbf{R}_{L} then the illuminance E_{4}, using equation $\mathbf{C 2}$, is given by :

$$
\begin{equation*}
E_{4}=R_{L} \cdot \frac{I}{R_{4} \cdot d^{2}} \tag{C3}
\end{equation*}
$$

The final step in the calibration is to determine the luminous intensity L, of the sample under test. The sample is placed in the sample holder in the required orientation and the reading R, recorded from the photometer head in the reflex photometer. Using equation 1 , the illuminance falling on the photometer head is given by :

$$
R_{1} \cdot \frac{1}{R_{D} \cdot D^{2}}
$$

The luminous intensity of the sample in the direction measured is then :

$$
\begin{equation*}
L=R \cdot \frac{I \cdot T^{2}}{R_{D} \cdot D^{2}} \tag{C4}
\end{equation*}
$$

where T is the test distance of the reflex photometer (see Figure C2).

The coefficient of luminous intensity (R) of the sample using equations C 3 and C 4 is :

$$
\begin{aligned}
R & =\frac{I_{\epsilon}}{E_{s}} \\
& =\frac{R_{1} \cdot R_{\perp} \cdot d^{2} \cdot T^{2}}{R_{L} \cdot R_{D} \cdot D^{2}}
\end{aligned}
$$

The R value of the sample is therefore determined from the four photometric readings and the three distances, the luminous intensity of the auxiliary lamp cancelling out in the final formula.

Notes on the calibration procedure
(i) The two readings taken using the auxiliary lamp must be in the same direction from the lamp so that the luminous intensity directed towards the photometer heads is identical.
(ii) It is assumed that the linearities of the auxiliary photometer head and of the photometer head in the reflex photometer are adequate. If not, corrections should be made to the readings.
(iii) When coloured retroreflectors are measured it is assumed that the correction to the CIE Standard Photometric Observer of the photometer head in the reflex photometer is adequate. If not, suitable corrections must be applied for each colour tested; see section 4.1.1.

[^0]: *) Superscripts refer to Explanatory Comments on the Official Recommendations given on pagas 23 to 26.

